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Background

Transport equation

General form:

us + Vx - (a(u,x,t)u) = 0.

Examples:

2-D Linear transport equation:

ug + (a(x, y,t)u). + (b(x, y, t)u),

1D1V Vlasov-Poisson system:

fe+vfo+ E(z,t)fo =

=0.

Er:/Rf(x,ut)d o |/ /fxv 0)dvdz.
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Background

Applications

@ Climate modeling

@ Plasma application
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Background

Semi-Lagrangian (SL) schemes

o Semi—Lagrangian (SL) [E. Sonnendriicker 1999, N. Besse 2003, J.-M. Qiu 2010]
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@ Splitting-based SL
@ Non-splitting SL
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Background

Major goals

Introduce two different kinds of SL finite volume (FV) schemes enjoying all the
following properties:

@ Mass conservation

High-order accuracy in time and space

Unconditional stability (large time step)

Positivity preservation
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© Design of the SL-FV-WENO Schemes
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Splitting-Based SL-FV-WENQO Scheme

1-D SL-FV formulation

Consider a 1-D linear transport equation

ou 0
i %(a(x,t)u) =0. (5)

We define that X (z;t) represents the characteristic curve emanating from
(z,t"*1), i.e. the solution of the following ordinary differential equation (ODE):

dX (t)/dt = a(X(t),1),
{X(tnﬂ) —z, ©)
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Splitting-Based SL-FV-WENQO Scheme

An SL-FV scheme is formulated as follow:
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Splitting-Based SL-FV-WENQO Scheme

1-D SL-FV-WENO scheme

1
—n+1 —n
Uy = A 5, W ({@'}) de, (8)

where W(+) represents a piecewise reconstruction polynomial.

1-D WENO-ZQ reconstruction method

The FV solution {u]} Y, a piecewise P* polynomial (z)

where

u(x) =u%(z) € PML), (x,y) €l Vi
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Splitting-Based SL-FV-WNO Scheme

Schematics of the reconstruction procedure

T

(b) FV solution
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Splitting-Based SL-FV-WENQO Scheme

E5
3
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T
(d) FV solution
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(e) WENO-ZQ reconstruction (f) Linear reconstruction

Nanyi Zheng (University of Delaware) July 24th

12 /43



Splitting-Based SL-FV-WENQO Scheme

1-D WENO-ZQ reconstruction

The 1-D WENO-ZQ reconstruction polynomial at I; is defined by
10) =1 (o) - 2aale) - Lin(o)) +wnele) +wnle), )
ga! ga! ga!
where
@ {7} is a set of positive weights satisfying >, v = 1,
@ {w;} is a set of nonlinear weights depending on {7;} and the smoothness of
{a (=)},
@ qi(z) € P4(x) is the "big" polynomial constructed based on stencil
{im2, Lim1, Ly Liga, Ligo}
@ q2(z) € P(z) is the left-biased “small" polynomial constructed based on
stencil {I;,_1,;}
@ ¢3(x) € P(x) is the left-biased “small" polynomial constructed based on
stencil {Ii7 Ii+1}
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Splitting-Based SL-FV-WENQO Scheme

To be specific:

1

de =uy,, l=-2,-1,0,1,2. 10
Az [, (=T, (10)
1

de=u"%, l=—-1.0 11
Az Ligi @) =T, Y ()
1
— de=wu},;, 1=0,1. 12
Ap [ wleie =, (12

For more details, see the first WENO-ZQ paper’.

1), Zhu and J. Qiu: A new fifth order finite difference WENO scheme for solving hyperbolic conservation laws,
J. Comput. Phys., 318 (2016), 110-121..
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Splitting-Based SL-FV-WENQO Scheme

High-dimensional splitting-based SL-FV-WENO

’ 1-D SL-FV-WENO scheme‘ + ’ Dimensional splitting method‘

Consider the 2-D linear transport equation

ou 0 9
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Splitting-Based SL-FV-WENQO Scheme

Fourth-order dimensional splitting

stage 1: evolve u; + (au), =0 for c; A",
stage 2: evolve u; + (bu), =0 for diAt",
stage 3: evolve u; + (au), =0 for coAt™,
stage 4: evolve u; + (bu)y, =0 for dpAt", (14)
stage 5: evolve wu; + (au), =0 for czAt”,
stage 6: evolve u; + (bu), =0 for dsAt",
stage 7: evolve u; + (au), =0 for cyAt"

with

dy =ds=1/(2-2Y3) ~1.3512, dy = —2V3/(2 —2'/3) = —1.7024,

15
Cl =C4 = d1/2 ~ 0.6756, co =c3 = (dl + dg)/2 ~ —0.1756. ( )
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Splitting-Based SL-FV-WENQO Scheme

Nodal-modal exchange for splitting

Modal to nodal

u

t=1t" 4+ c1 At" t=1t" 4 c1 At"

1D SL-FV-WENO

Nodal to modal

t=1t" t=1t"

Mass conservation property is not destroyed!
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Non-Splitting SL-FV-WENO Scheme

2-D SL-FV formulation

Consider the 2-D linear transport equation

ou 0

yn + %(a(;my,t)u) + %(b(% y,t)u) = 0. (16)

We define that (X (z,y;t), Y (x,y;t)) represents the characteristic curve

emanating from (z,y,t""1), i.e. the solution of the following ordinary differential
equations (ODEs):

dX (t)/dt = a(X(t),Y (2),1),
dY (£)/dt = b(X (£), Y (1), 1),
X () = x,
Y (") = y.

(17)
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Non-Splitting SL-FV-WENO Scheme

An SL-FV scheme can be formulated as follow:

1 n+1 _ 1 // n
soay [, vt ety = o [ st tasay, 9
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Non-Splitting SL-FV-WENO Scheme

2-D SL-FV-WENO scheme

771—1-1
ig A:UAy //* (@, y)dzdy, (19)

where u(z, y) := W?P({u};}) represents a piecewise reconstruction polynomial.

WENO-ZQ reconstruction method

2D
The FV solution {@".} Y~ a piecewise P* polynomial w(z,y
i,

where

a(*1'711/) = ﬁ(l7J)(m7y) € Pg(Ii,j)a (xay) S Ii,ja V(’L,])
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Non-Splitting SL-FV-WENO Scheme

Reconstructing upstream cells

V1U203V4
I

(g) t=t"*" (h) t =t

step 1 Locate four Gauss-Lobatto-Legendre (GLL) points at each edge of the {I; ;}.

step 2 For I}, the characteristic feet {vj} can be obtained by solving the ODEs
(17) at t = t™.

Nanyi Zheng (University of Delaware) July 24th 21/43



Non-Splitting SL-FV-WENO Scheme

step 3 For given curved edge of a characteristic upstream cell, say I} ;, there are
four characteristic feet denoted as {v}}. By {v}}, we interpolate a cubic

curve as an edge of I}, in parametric form:

{w(é) = 2,63 + €2 + 3, + 74, (20)

Y(€) = Ya&® + W& + yel +ya, €€ [-1,1].
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Non-Splitting SL-FV-WENO Scheme

Clipping

.
<.
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Figure 1: Schematic illustration for the definitions of outer integral segments
(left) and inner integral segments (right). The red circles and triangles represent
the intersection points of I, and the Eulerian mesh.
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Non-Splitting SL-FV-WENO Scheme

Integral strategy

—_n+1 __
u; Aa:Ay//* (z,y)dzdy

u(P:a)
AxAy Z:) //I* (z,y)dxdy

i,4:p,q

P(P#I) O (P.a)
AxAy Z / o(fz, dv+Q dy}

=Z{Z/

k
(p’q) k [’7 Jip.q

+ Z/ P(Pﬂ)dw + @(”’Q)dy} }7

©,Jip,q

{ b @(p,q)dy}
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Theoretical Properties

@ Mass conservation
§ :—n+1 § —n

High-order accuracy in time and space

1
—n+1 n+1 . 4
Y T Azhy //IJ u(z,y, " Hdzdy| = O(Az*).

@ Unconditional stability

[ Pl P

o Positivity preservation?

u;'; >0 foralld,j,n

2X. Zhang, C. W. Shu, On maximum-principle-satisfying high order schemes for scalar conservation laws,
Journal of Computational Physics 229 (2010).
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Numerical Tests

Linear transport simulation
Example 1
(Swirling deformation flow). Consider
~ioreos?(E e oY _
uy — (2mcos (2)S|n(y)g(t)u)m + (27sin(x)cos (2)g(t)u)y 0, (22)
x € |-m7], y€ |-, 7],

where g(t) = cos(nt/T) and T = 1.5.
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Numerical Tests

Table 1: (Swirling deformation flow). L? errors and corresponding orders of

accuracy of the non-splitting and splitting-based schemes at ¢t = 1.5 with CFL =

10.2.
Non-splitting Splitting

mesh L? error  order | L? error order

40x 40 6.47E-03 — 1.63E-02 —

80x 80 5.82E-04 3.47 | 2.01E-03 3.02

160x 160 4 47E-05 3.70 | 9.42E-05 4.41

320x 320 3.90E-06 3.52 | 5.39E-06 4.13

640x 640 3.28E-07 3.57 | 3.11E-07 4.12

1280x 1280 | 2.51E-08 3.71 | 1.50E-08 4.37

2560x 2560 | 3.11E-11 9.66 | 1.15E-10 7.03

5120x 5120 | 1.37E-12 450 | 2.39E-12 5.59
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Numerical Tests
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Figure 2: (Swirling deformation flow). Left: log-log plot of the CPU times vs. the
L? errors with the same settings in Table 1. Right: log-log plot of the CFL
numbers vs. the L? errors with a fixed mesh of 160 x 160 at t = 1.5.
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Numerical Tests

Example 2 (Swirling deformation flow)

Consider (22) with the following discontinuous initial condition:

3
2 0.8

1
06

>0
{0.4

-1
2 0.2

-3 0
-3 -2 -1 0 1 2 3
X

(a) Mesh plot (b) Contour plot

Figure 3: (Swirling deformation flow). Mesh plot and contour plot of the
discontinuous initial condition.
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Numerical Tests

(a) Non-splitting (b) Splitting

Figure 4: (Swirling deformation flow). Mesh plots of the numerical solutions of
the two methods with CFL = 10.2 at ¢t = 0.75.
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Numerical Tests

| \1‘ 'wd
I u"l‘ v‘w\«m I

(a) Non-splitting (b) Splitting

Figure 5: (Swirling deformation flow). Mesh plots of the numerical solutions of
the two methods with CFL = 10.2 at ¢t = 1.5.
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Numerical Tests

Nonlinear guiding center Vlasov model

The guiding center Vlasov model describes a highly magnetized plasma in the
transverse of a tokamak3:#. It can be written as

e+ V- (Ep) =0, (23)
~A® =p, Et =(-9,,0,), (24)
where p(z,y,t) represents the charge density and E is the electric field.
CFL
* At = .
max{|E1|} n max{|F2|}
Ax Ay

3M. M. Shoucri, A twoaARlevel implicit scheme for the numerical solution of the linearized vorticity equation,
International Journal for Numerical Methods in Engineering 17 (2010).

4N. Crouseilles, M. Mehrenberger, E. Sonnendrﬁijcker,
Conservative semi-Lagrangian schemes for Vlasov equations, Journal of Computational Physics 229 (2010).
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Numerical Tests

Example 3 (Kelvin-Helmholtz instability problem)

Consider the guiding center Vlasov model with initial condition

u(z,y,0) = sin(y) + 0.015cos(kz), « € [0,4n], y € [0,27], (25)

where k = 0.5, and with the periodic boundary condition.
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Numerical Tests

Table 2: (Kelvin-Helmholtz instability problem). L? errors and corresponding

orders of accuracy of the non-splitting and splitting-based SL-FV WENO schemes
for Kelvin-Helmholtz instability problem at 7" =5 with CFL = 1.

Non-splitting Splitting
mesh L? error order | L? error order
16x 16 3.49E-03 — 2.35E-02 —
32x 32 2.64E-04 3.73 | 1.28E-02 0.88
64x 64 1.04E-05 4.66 | 6.80E-03 0.91
128x 128 | 4.65E-07 4.49 | 3.51E-03 0.95
256x 256 | 3.12E-09 7.22 | 1.79E-03 0.97
512x 512 | 8.89E-11 5.14 | 9.03E-04 0.99
July 24th
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Numerical Tests
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Figure 6: (Kelvin-Helmholtz instability problem). Log-log plot of the CFL
numbers vs. the L? errors of the two schemes with a fixed mesh of 128 x 128 for
Kelvin-Helmholtz instability problem at 7' = 5.
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Numerical Tests

Figure 7: (Kelvin-Helmholtz instability problem). Contour plots of the numerical
solution of the non-splitting SL-FV WENO scheme with CFL = 1 (left) and with
CFL = 10.2 (right) at T = 40.
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Numerical Tests
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Figure 8: (Kelvin-Helmholtz instability problem). Contour plots of the numerical
solution of the splitting-based SL-FV WENO scheme with CFL = 0.1 (left) and
CFL =1 (right) at T' = 40.
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Concluding Remarks

Concluding Remarks

@ The splitting-based SL-FV-WENO scheme is easy to extend to
arbitrary high-dimensional problems. However, its accuracy decays to
first-order for some nonlinear models.

@ The non-splitting SL-FV-WENO scheme shows great potential and
seems to be the better one. However, it is extremely difficult to extend
to higher-dimensional problems.

Future works
@ Higher-dimensional clipping-free non-splitting SL-FV schemes.

@ More general models.
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