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Convection-diffusion flow

Consider a scalar convection-diffusion equation:

ut +∇x · (F(u,x, t)) = ε∆u,

where ε ≥ 0.
Applications:

fluid dynamics
materials science
meteorology
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Motivation example: Incompressible flow

Incompressible Navier-Stokes equation in vorticity stream function
formulation

ωt +∇ · (uω) =
1

Re
∆ω

∆Φ = ω, u = ∇⊥Φ = (−Φy,Φx).

Figure 1: Hurricane eye study. Vorticity. W. H. Schubert, et al., Journal of the
atmospheric sciences, 1999.
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Existing Grid-based Approaches

Eulerian Approach

Fixed spatial-temporal mesh
Robust and relatively easy to implement
Time-step constraints

Lagrangian Approach

Follows characteristics in time evolution
larger time-step size
The moving Lagrangian mesh can be greatly distorted

Semi-Lagrangian Approach

Fixed Eulerian mesh
Accurately track information propagation along characteristics
Allowing for large time-step size
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Technical difficulties of high order semi-Lagrangian schemes

high order remapping algorithm for high-D problem: quadratic curve
approximations to sides of upstream cells.

General nonlinear problems: characteristics tracing is difficult or
impossible.

Eulerian-Lagrangian Approach: ELDG, Cai, Qiu, Yang, JCP, 2021.
linearly Approximately tracking the characteristics by redefining the
space-time region.
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Illustration of Eulerian-Lagrangian approach: space-time
region
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The development of Eulerian-Lagrangian approach

Eulerian-Lagrangian scheme: ELDG, (Cai, Qiu, Yang, JCP, 2021);
unstructured mesh, (Cai, Qiu, SISC 2022).
Generalized Eulerian-Lagrangian schemes (splitting): linear system,
(Hong, Qiu, JSC 2024)
splitting Eulerian-Lagrangian finite volume scheme

WENO for convection-diffusion, (Nakao, Chen, Qiu, JCP, 2022)
scalar hyperbolic conservation laws, (Yang, Chen, Qiu, JCP, 2022)
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Challenges of non-splitting high order Eulerian-Lagrangian
Finite Volume Schemes

Challenges
The requirement of numerical reconstruction on dynamically varying
Lagrangian meshes.
The involvement of intermediate time stages in high-order time
discretizations.
The nonlinearity of the scalar convection-diffusion equation.

Novel solutions (contributions)
An efficient remapping method is designed to eliminate the need for
direct reconstruction on the varying Lagrangian meshes.
A special approach is applied to manage the intermediate time stages
in time discretizations.
Low-cost, specialized treatments are designed to address the
nonlinearity.
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Eulerian-Lagrangian formulation

Consider
ut + (a(x, y, t)u)x + (b(x, y, t)u)y = ε(uxx + uyy). (1)

We define a modified velocity field (α(x, y, t), β(x, y, t)) as follows.

1 At t = tn+1, α(x, y, tn+1) and β(x, y, tn+1) belong to Q1(Ii,j) satisfying

α(xi± 1
2
, yj± 1

2
, tn+1) = a(xi± 1

2
, yj± 1

2
, tn+1),

β(xi± 1
2
, yj± 1

2
, tn+1) = b(xi± 1

2
, yj± 1

2
, tn+1).

(2)
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Eulerian-Lagrangian formulation

2 We define a dynamic region

Ĩi,j(t) := {(x, y)|(x, y) = (x̃(t; (ξ, η, tn+1)), ỹ(t; (ξ, η, tn+1))), (ξ, η) ∈ Ii,j},

where (x̃(t; (ξ, η, tn+1)), ỹ(t; (ξ, η, tn+1))) (modified characteristic line)
represents the straight line going through (ξ, η, tn+1) satisfying{

x̃(t; (ξ, η, tn+1)) = ξ + (t− tn+1)α(ξ, η, tn+1),

ỹ(t; (ξ, η, tn+1)) = η + (t− tn+1)β(ξ, η, tn+1).

Ii,j

Ĩi,j(t
n)

Ĩi,j(t)

tn

t ∈ (tn, tn+1)

tn+1

Xiaofeng Cai (BNU & UIC) August 26, 2024 12 / 63



Eulerian-Lagrangian formulation

3 For t ∈ [tn, tn+1) and (x̃(t; (ξ, η, tn+1)), ỹ(t; (ξ, η, tn+1))) ∈ Ĩi,j(t),{
α(x̃(t; (ξ, η, tn+1)), ỹ(t; (ξ, η, tn+1))) = α(ξ, η, tn+1),

β(x̃(t; (ξ, η, tn+1)), ỹ(t; (ξ, η, tn+1))) = β(ξ, η, tn+1).

With the definition above, we have an ALE formulation

d

dt

∫∫
Ĩi,j(t)

udxdy = −
∫
∂Ĩi,j(t)

(a− α, b− β)u · nds+ ε

∫∫
Ĩi,j(t)

∆udxdy.
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Eulerian-Lagrangian formulation

We define F(u, x, y, t) := ((a− α)u, (b− β)u) and provide the concise EL-FV
formulation:

d

dt

∫∫
Ĩi,j(t)

u(x, y, t)dxdy = −
∫
∂Ĩi,j(t)

F(u, x, y, t) · nds+ ε

∫∫
Ĩi,j(t)

∆udxdy

:= Fi,j(u; t) + Gi,j(u; t).

(3)
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the semi-discretization of the Eulerian-Lagrangian scheme

To evaluate the right-hand side (RHS) of (3), we introduce the following notation
for semi-discretization:

dũi,j(t)

dt
= F̃i,j(U; t) + G̃i,j(U; t), (4)

where

the notation ·̃ specifies that the integral value corresponds to the
characteristic spatial region Ĩi,j(t),

ũi,j(t) approximates
∫∫
Ĩi,j(t)

u(x, y, t)dxdy,

F̃i,j(U; t) approximates Fi,j(u; t),

G̃i,j(U; t) approximates Gi,j(u; t),

U := (ui,j(t))NxNy represents the finite volumes such that

ui,j(t) ≈
1

|Ii,j |

∫∫
Ii,j

u(x, y, t)dxdy. (5)
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the semi-discretization of the Eulerian-Lagrangian scheme

Similar to U, we can also represent (4) globally as follows:

dŨ(t)

dt
= F̃(U; t) + G̃(U; t), (6)

where F̃ :=
(
F̃i,j

)
NxNy

and G̃ :=
(
G̃i,j
)
NxNy

.
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First-order EL-RK-FV scheme

Coupling (6) with the first-order forward-backward Euler IMEX method in1 yields
the first-order EL-RK-FV scheme:

MU
n+1

= Ũn + ∆tF̃(U
n
, tn) + ∆t

(
εMDU

n+1
)
, (7)

where

M is a diagonal matrix such that MU
n+1

=
(
|Ii,j |un+1

i,j

)
NxNy

.

Ũn approximates
(∫∫

Ĩi,j(tn)
u(x, y, tn)dxdy

)
NxNy

,

D is a differential matrix such that

DU
n+1

approximates

(
1

|Ii,j |

∫∫
Ii,j

∆udxdy

)
NxNy

.

1Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. “Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations”. In: Applied Numerical Mathematics 25.2 (1997),
pp. 151–167. ISSN: 01689274.
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First-order EL-RK-FV scheme

As shown, the diffusion term in (7) is implicit. Consequently, U
n+1

is obtained by
solving the following linear system:

M (I−∆tεD)U
n+1

= Ũn + ∆tF̃(U
n
, tn). (8)

Remark 1
(Empirical time-step constraint of the convection term for stability)

∆t ∼
√

min{∆x,∆y}.
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High-order EL-RK-FV-WENO schemes

MU
n+1

= Ũn + ∆tF̃(U
n
, tn) + ∆t

(
εMDU

n+1
)

Part 1: the scheme of the flux F̃(U
n
, tn) consists of three components:

1 WENO reconstruction UWENO
i,j on the Eulerian mesh based on U

n

2 A novel and simple remapping strategy for Ũn

Eulerian UWENO
i,j → Lagrangian Ũn

3 Upwind flux: F̃(Ũn)

Part 2: the scheme of DU
n+1

Part 3: the coupling of the semi-discretization with high-order IMEX RK
methods within the Eulerian-Lagrangian framework

Part 4: Eulerian-Lagrangian scheme is high order for nonlinear problems.
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Part 1: Flux approximation: WENO

Step 1 Construct a piecewise polynomial uWENO(x, y) with respect to the
Eulerian mesh, {Ii,j}, such that

1 Piecewise: uWENO(x, y)|Ii,j = uWENO
i,j (x, y) with

uWENO
i,j ∈ P 2(Ii,j);

2 Reconstruction Stencils: each uWENO
i,j is constructed based

on the information ui,j(t) along with its eight neighbor finite
volumes;

3 Mass conservation:∫∫
Ii,j

uWENO(x, y)dxdy = ∆xi∆yjui,j(t);
4 High order accuracy: uWENO(x, y) = u(x, y, t) +O(∆x3),

(x, y) ∈ Ω.
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Part 1: Flux approximation: WENO Cont.

For convenience, we assume ∆xi ≡ ∆x and ∆yj ≡ ∆y for all i, j. We define
µi(x) := x−xi

∆x , νj(y) :=
y−yj
∆y and introduce a set of local orthogonal polynomials

as {P (i,j)
l (x, y)} for a given cell Ii,j :

P
(i,j)
1 := 1, P

(i,j)
2 := µi(x), P

(i,j)
3 := νj(y),

P
(i,j)
4 := µ2

i (x)− 1

12
, P

(i,j)
5 := µi(x)νj(y), P

(i,j)
6 := ν2

j (y)− 1

12
.
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Part 1: Flux approximation: WENO Cont.

We assume that u5 := ui,j and I5 := Ii,j , while {us} and {Is} represent
corresponding cell averages and Eulerian cells based on the serial number in
Figure 2. The reconstruction procedure is performed as follows:

1 2 3

4 5 6

7 8 9

i− 1 i i+ 1

j − 1

j

j + 1

Figure 2: Stencil for the 3rd-order WENO-ZQ reconstruction.
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Part 1: Flux approximation: WENO Cont.

Step 1.1 Construct a quadratic polynomial q0(x, y) =
6∑
l=1

aq0l P
(i,j)
l (x, y)

using a special least-squares procedure. We define

V := {p(x, y) ∈ P 2(Ii,j)|
1

∆x∆y

∫
Is

p(x, y)dxdy = us, s = 2, 4, 5, 6, 8},

E(p(x, y)) :=

[ ∑
s=1,3,7,9

(
1

∆x∆y

∫
Is

p(x, y)dxdy − us

)2
] 1

2

.

Then, we determine that q0(x, y) is the unique polynomial
satisfying:

E(q0(x, y)) = min
p∈V

E(p(x, y)). (9)
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Part 1: Flux approximation: WENO Cont.

Step 1.2 Construct eight linear polynomials

{qk(x, y)}8k=1 = {
3∑
l=1

aqkl P
(i,j)
l (x, y)} satisfying:

1

∆x∆y

∫∫
I5

qk(x, y)dxdy = u5 for k = 1, 2, . . . , 8, (10)

and
1

∆x∆y

∫∫
Is

qk(x, y)dxdy = us, (11)

where

s = 1, 2 for k = 1; s = 2, 3 for k = 2;

s = 3, 6 for k = 3; s = 6, 9 for k = 4;

s = 8, 9 for k = 5; s = 7, 8 for k = 6;

s = 4, 7 for k = 7; s = 1, 4 for k = 8.
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Part 1: Flux approximation: WENO Cont.

Step 1.3 Rewrite q0(x, y) as follows:

q0(x, y) = γ0

(
1

γ0
q0(x, y)−

8∑
k=1

γk
γ0
qk(x, y)

)
+

8∑
k=1

γkqk(x, y),

where {γk}8k=0 is a set of positive linear weights with their sum
being 1. The linear weights control the balance between optimal
reconstruction accuracy and avoiding numerical oscillation. In our
numerical tests, we set γ0 = 0.6 and γ1 = . . . = γ8 = 0.05 for such
balance.
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Part 1: Flux approximation: WENO Cont.

Step 1.4 Compute the smoothness indicators of {qk(x, y)}8k=0:

β0 =
1

∆x∆y

∑
l1+l2≤2

∫∫
I5

(
∆xl1∆yl2

∂|l1+l2|

∂l1∂l2
q0(x, y)

)2

dxdy,

βk =
1

∆x∆y

∑
l1+l2≤1

∫∫
I5

(
∆xl1∆yl2

∂|l1+l2|

∂l1∂l2
qk(x, y)

)2

dxdy,

for k = 1, . . . , 8.

The explicit expressions of {βk}8k=0 are given by

β0 = (aq02 )
2

+ (aq03 )
2

+
13

3
(aq04 )

2
+

7

6
(aq05 )

2
+

13

3
(aq06 )

2
,

βk = (aqk2 )
2

+ (aqk3 )
2 for k = 1, 2, . . . , 8.

(12)
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Part 1: Flux approximation: WENO Cont.

Step 1.5 Compute the nonlinear weights {ωk}8k=0: ωk = ω̃k
8∑

l=0

ω̃l

,

where ω̃k = γk

(
1 + τ

5
4

βk+ε

)
(WENO-Z2) for k = 0, 1, . . . , 8

with τ =

8∑
k=1

|β0−βk|

8 .

When the exact solution is smooth over the entire large stencil
9⋃
s=1

Is, we can prove

ωk =

{
γk

(
1 +O

(
∆x

7
4

))
, if Du|(xi,yj) 6= 0 and D2u|(xi,yj) 6= 0,

γk (1 +O (∆x)) , if Du|(xi,yj) = 0 and D2u|(xi,yj) 6= 0,

by Taylor expansion.

2Marcos Castro, Bruno Costa, and Wai Sun Don. “High order weighted essentially non-oscillatory
WENO-Z schemes for hyperbolic conservation laws”. In: Journal of Computational Physics 230.5 (2011),
pp. 1766–1792.
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Part 1: Flux approximation: WENO Cont.

Step 1.6 Construct the final reconstruction polynomial as follows:

uWENO
i,j (x, y) = ω0

(
1

γ0
q0(x, y)−

8∑
k=1

γk
γ0
qk(x, y)

)
+

8∑
k=1

ωkqk(x, y).

Eventually, we define that uWENO(x, y) is the piecewise polynomial satisfying:

uWENO(x, y) = uWENO
i,j (x, y) (x, y) ∈ Ii,j for all i, j.
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Part 1: Flux approximation: remapping

Step 2: Construct a piecewise polynomial on the Lagrangian mesh {Ĩi,j(t)}
(remapping).

ĩ− 1 ĩ ĩ+ 1

j̃ − 1

j̃

j̃ + 1

(a) Piecewise polynomial
uWENO(x, y)

ĩ− 1 ĩ ĩ+ 1

j̃ − 1

j̃

j̃ + 1

Ĩi,j(t)

(b) ũWENO
i,j (x, y)

Figure 3: Schematic illustrations of uWENO(x, y) and ũWENO
i,j (x, y).
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Part 1: Flux approximation: remapping Cont.

The basic idea of this remapping step is that we want to conduct an efficient
modification to uWENO(x, y) instead of involving a new reconstruction on the
Lagrangian mesh. The resulting new piecewise polynomial, denoted by
ũWENO(x, y), satisfies the following conditions:

ũWENO(x, y)|Ĩi,j(t) = ũWENO
i,j (x, y) with ũWENO

i,j ∈ P 2(Ĩi,j(t)) for all i, j,∫∫
Ĩi,j(t)

ũWENO(x, y)dxdy =
∫∫
Ĩi,j(t)

uWENO(x, y)dxdy for all i, j,

ũWENO(x, y) = u(x, y, t) +O(∆x3), (x, y) ∈ Ω.
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Part 1: Flux approximation: remapping Cont.

Step 2.1: Compute the exact “mass" of uWENO(x, y) over Ĩi,j(t), i.e.

ũi,j :=

∫∫
Ĩi,j(t)

uWENO(x, y)dxdy. (13)

The integrand in Equation (13) is discontinuous over Ĩi,j(t). A
numerical integral for Equation (13) contains two basic steps.
First, a clipping procedure is conducted to divide Ĩi,j(t) into
smaller polygons such that uWENO(x, y) is continuous in each of
them. Second, a numerical integration is conducted in each
polygon, and the results are summed to obtain the final integral.
Following these two basic steps, there are different implementation
methods3,4,5.

3Juan Cheng and Chi-Wan Shu. “A high order accurate conservative remapping method on staggered
meshes”. In: Applied Numerical Mathematics. Spectral Methods in Computational Fluid Dynamics 58.7
(2008), pp. 1042–1060. ISSN: 0168-9274.

4Peter H. Lauritzen, Ramachandran D. Nair, and Paul A. Ullrich. “A conservative semi-Lagrangian
multi-tracer transport scheme (CSLAM) on the cubed-sphere grid”. In: Journal of Computational
Physics 229.5 (2010), pp. 1401–1424. ISSN: 00219991.

5Nanyi Zheng et al. “A fourth-order conservative semi-Lagrangian finite volume WENO scheme
without operator splitting for kinetic and fluid simulations”. In: Computer Methods in Applied Mechanics
and Engineering 395 (2022), p. 114973. ISSN: 0045-7825.
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Part 1: Flux approximation: remapping Cont.

Step 2.2: Find all Eulerian cells that intersect with Ĩi,j(t). We define that
K := {(p, q)|Ip,q ∩ Ĩi,j(t) 6= ∅}. For instance, in Figure 3b,
K = {(̃i− 1, j̃ + 1), (̃i, j̃ + 1), (̃i− 1, j̃), (̃i, j̃), (̃i, j̃ − 1)}.

Step 2.3: Compute the integrals of the candidate P 2 polynomials over
Ĩi,j(t), i.e.

ũp,qi,j :=

∫∫
Ĩi,j(t)

uWENO
p,q (x, y)dxdy, (p, q) ∈ K. (14)

Step 2.4: Choose the index (p̃, q̃) such that |ũp,qi,j − ũi,j | reaches the
minimum, i.e.

|ũp̃,q̃i,j − ũi,j | = min
(p,q)∈K

{|ũp,qi,j − ũi,j |}. (15)

Step 2.5: Define a P 2 polynomial, denoted by ũWENO
i,j (x, y), on Ĩi,j(t) such

that

ũWENO
i,j (x, y) := uWENO

(p̃,q̃) (x, y)|Ĩi,j(t) −
1

|Ĩi,j(t)|
ũ

(p̃,q̃)
i,j +

1

|Ĩi,j(t)|
ũi,j .
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Part 1: Flux approximation: upwind flux

Step 3: Construct the final flux approximation.
The final flux approximation is given by the following conservative
formulation

F̃i,j(U; t) := −
∫
∂Ĩi,j(t)

F̂
(
ũWENO, x, y, t

)
ds, (16)

where
F̂
(
ũWENO, x, y, t

)
:= W (x, y, t)ũup

i,j(x, y) (17)

with
W (x, y, t) := (a− α, b− β) · n (18)

and

ũup
i,j(x, y) :=

{
ũWENO
i,j (x, y), W > 0,

ũWENO,ext
i,j (x, y), W ≤ 0.

(19)

Here, ũWENO,ext
i,j (x, y) are the exterior solution with respect to

corresponding edge of Ĩi,j(t).
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Part 2: Approximation of the diffusion term

Step 1: Recover high-order finite volume information of ∆u.
We recover

∆U := DU, (20)

where D is the differential matrix assembled by the following local
operators

∆ui,j :=

 − 1
12
4
3

− 5
2

4
3

− 1
12


T  1

∆x2

 ui−2,j
ui−1,j
ui,j

ui+1,j
ui+2,j

+
1

∆y2

 ui,j−2
ui,j−1
ui,j

ui,j+1
ui,j+2

 ,

for all i, j, and corresponding boundary conditions.

Step 2: Recover a piecewise reconstruction polynomial of ∆u.
We utilize the same polynomial q0(x, y) in step 1.1 of the flux
approximation as the reconstruction formula and denote the final
piecewise polynomial by ∆urec(x, y).
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Part 2: Approximation of the diffusion term

Step 3: Compute the integral of ∆urec(x, y) as the final approximation.

G̃i,j(U; t) = ε

∫∫
Ĩi,j(t)

∆udxdy

≈ε
∫∫

Ĩi,j(t)

∆urec(x, y)dxdy := ε∆̃ui,j
(
U; t

)
for all i, j,

where the integral of piecewise polynomial is accomplished by the
method of our previous work6.

6Nanyi Zheng et al. “A fourth-order conservative semi-Lagrangian finite volume WENO scheme
without operator splitting for kinetic and fluid simulations”. In: Computer Methods in Applied Mechanics
and Engineering 395 (2022), p. 114973. ISSN: 0045-7825.
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Part 3: High-order IMEX RK temporal discretization

An IMEX RK scheme can be represented by the following two butcher tables:

Implicit Scheme Explicit Scheme
0 0 0 0 · · · 0
c1 0 a11 0 · · · 0
c2 0 a21 a22 · · · 0
...

...
...

...
. . .

...
cs 0 as1 as2 · · · ass

0 b1 b2 · · · bs

0 0 0 0 · · · 0
c1 â21 0 0 · · · 0
c2 â31 â32 0 · · · 0
...

...
...

...
. . .

...
cσ−1 âσ,1 âσ,2 âσ,3 · · · 0

b̂1 b̂2 b̂3 · · · b̂σ

A triplet (s, σ, p) is used to demonstrate that the IMEX scheme uses an s-stage
implicit scheme and a σ-stage explicit scheme achieving pth-order accuracy. Here,
σ = s+ 1 unless cs = 1 and âσ,j = b̂j for all j = 1, 2, . . . , σ, in which case σ = s.
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Part 3: High-order IMEX RK temporal discretization

The butcher table of first-order IMEX scheme in (7), which is also called
IMEX(1,1,1) in7, is

Implicit Scheme Explicit Scheme
0 0 0
1 0 1

0 1

0 0 0
1 1 0

1 0

The second-order IMEX(1,2,2) scheme in6 is represented by the following butcher
tables:

Implicit Scheme Explicit Scheme
0 0 0
1
2 0 1

2

0 1

0 0 0
1
2

1
2 0
0 1

7Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. “Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations”. In: Applied Numerical Mathematics 25.2 (1997),
pp. 151–167. ISSN: 01689274.

Xiaofeng Cai (BNU & UIC) August 26, 2024 37 / 63



Part 3: High-order IMEX RK temporal discretization

Ii,j

Ĩi,j(t
n)

Ĩi,j(t
n+ 1

2 )

tn

tn+ 1
2

tn+1

(a)

Ii,j

Ii,j

Ĩi,j(t
n+ 1

2 ) tn

tn+ 1
2

tn+1

˜̃
Ωi,j

(b)

Figure 4: Schematic illustration of full discretization with IMEX(1,2,2).
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Part 3: High-order IMEX RK temporal discretization

The second-order fully discrete scheme is provided as follows (see Figure 4):

MU
(1)

=
˜̃
U
n

+
1

2
∆t
˜̃F(U

n
, tn) +

1

2
∆t
(
εMDU

(1)
)
, (21)

MU
n+1

= Ũn + ∆tF̃(U
(1)
, tn+ 1

2 ) + ∆tG̃(U
(1)
, tn+ 1

2 ), (22)

where

the notation ˜̃· is used to indicate that the corresponding values or operations

refer to specific slices of the characteristic region ˜̃Ωi,j ,˜̃
U
n

:=
(∫∫

Ĩi,j(tn+1
2 )
W
(
U
n
)
dxdy

)
NxNy

(see Figure 4b).

Xiaofeng Cai (BNU & UIC) August 26, 2024 39 / 63



Part 4: Extension for nonlinear problems

Consider
ut + (f1(u))x + (f2(u))y = ε(uxx + uyy). (23)

1. Redesign the modified velocity field.
The construction of the original modified velocity field requires the exact
velocity field at t = tn+1, which is unknown for nonlinear models. We
redesign that (α(x, y, t), β(x, y, t)) is defined by first applying interpolation
at t = tn+1 such that

α(xi± 1
2
, yj± 1

2
, tn+1) = f ′1(W(U

n
))|(x

i± 1
2
,y

j± 1
2

),

β(xi± 1
2
, yj± 1

2
, tn+1) = f ′2(W(U

n
))|(x

i± 1
2
,y

j± 1
2

),
(24)

This modified velocity field can still give us the same time-step constraint
∆t ∼

√
min{∆x,∆y} if we apply similar analysis as in Remark 1.
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Part 4: Extension for nonlinear problems

2. Recover the velocity fields at intermediate time levels.
The velocity field for t ∈ (tn, tn+1], which is required for evaluating
numerical fluxs, is unknown for nonlinear models. For this issue, we simply
use the predicted solutions at the intermediate time levels to recover
corresponding velocity fields. For example, in (22), the exact velocity field
(a(x, y, tn+ 1

2 ), b(x, y, tn+ 1
2 )) is replaced with

(
f ′1(W(U

(1)
)), f ′2(W(U

(1)
))
)

for F̃
(
U

(1)
, tn+ 1

2

)
.
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Numerical tests

The time-steps in the following are defined by:

∆t =
CFL

max{|f ′(u)|}
∆x + max{|g′(u)|}

∆y

,

where (f ′(u), g′(u)) represents the corresponding velocity field.

For pure convection simulation, we use the third-order Runge-Kutta
temporal discretization with the following butcher table:

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6
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Numerical tests

For convection-diffusion simulation, we apply IMEX(2,3,3) in8 a third-order
scheme with the following butcher tables:

Implicit Scheme Explicit Scheme
0 0 0 0
γ 0 γ 0

1− γ 0 1− 2γ γ
0 1

2
1
2

0 0 0 0
γ γ 0 0

1− γ γ − 1 2 (1− γ) 0
0 1

2
1
2

where γ = (3 +
√

3)/6.

8Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri. “Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations”. In: Applied Numerical Mathematics 25.2 (1997),
pp. 151–167. ISSN: 01689274.
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Linear models: pure advection equation

Example 1
(Swirling deformation flow) Consider the following equation:

ut − (2πcos2(
x

2
)sin(y)g(t)u)x + (2πsin(x)cos2(

y

2
)g(t)u)y = 0,

x, y ∈ [−π, π],
(25)

where g(t) = cos(πt/T ) with T = 1.5.

We first consider (25) with the following smooth initial condition:

u(x, y, 0) =

{
rb0cos(

rb(x)π

2rb0
)6 if rb(x) < rb0,

0, otherwise,
(26)

where rb0 = 0.3π, rb(x) =
√

(x− xb0)2 + (y − yb0)2 and the center of the cosine
bell (xb0, y

b
0) = (0.3π, 0).
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Spatial accuracy

Table 1: (Swirling deformation flow) L1, L2, and L∞ errors and corresponding
orders of accuracy of the EL-RK-FV-WENO scheme for (25) with initial condition
(26) at t = 1.5 with CFL = 1.

mesh L1 error order L2 error order L∞ error order
20× 20 8.37E-03 — 4.51E-02 — 7.40E-01 —
40× 40 3.85E-03 1.12 2.52E-02 0.84 4.74E-01 0.64
80× 80 1.16E-03 1.72 8.06E-03 1.64 1.66E-01 1.52
160× 160 2.22E-04 2.39 1.50E-03 2.43 3.24E-02 2.35
320× 320 3.01E-05 2.88 2.03E-04 2.88 4.86E-03 2.74
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Temporal accuracy and numerical stablity

Figure 5: (Swirling deformation flow) Log-log plot of CFL numbers versus L2

errors with fixed meshes 160× 160 and 320× 320 at t = 1.5 of the
EL-RK-FV-WENO scheme.
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Linear models

To validate the non-oscillatory nature of the proposed WENO reconstruction, we
consider a discontinuous initial condition featuring a cylinder with a notch, a
cone, and a smooth bell as shown in Figure 6.

(a) Mesh plot (b) Contour plot

Figure 6: (Swirling deformation flow) Mesh plot and contour plot of a
discontinuous initial condition.
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Linear models

(a) Mesh plot (b) Contour plot

Figure 7: (Swirling deformation flow) Mesh plot and contour plot of the
numerical solution of the EL-RK-FV-WENO scheme with CFL = 10.2 and mesh
size 100× 100 at t = 0.75.
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Linear models

(a) Mesh plot (b) Contour plot

Figure 8: (Swirling deformation flow) Mesh plots of the numerical solution of the
EL-RK-FV-WENO scheme (left) and WENO scheme in9 using the same setting
(right) with CFL = 10.2 and mesh size 100× 100 at t = 1.5.

9Nanyi Zheng et al. “A fourth-order conservative semi-Lagrangian finite volume WENO scheme
without operator splitting for kinetic and fluid simulations”. In: Computer Methods in Applied Mechanics
and Engineering 395 (2022), p. 114973. ISSN: 0045-7825.
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Nonlinear model

Example 2
(Kelvin-Helmholtz instability problem) Consider the guiding center Vlasov model:

ρt +∇ · (E⊥ρ) = 0,

−∆Φ = ρ, E⊥ = (−Φy,Φx) ,
(27)

with the periodic boundary condition and the following initial condition:

ρ(x, y, 0) = sin(y) + 0.015cos(0.5x), x ∈ [0, 4π], y ∈ [0, 2π], (28)

where ρ is the charge density and E is the electric field.
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Nonlinear model

Table 2: (Kelvin-Helmholtz instability problem) L1, L2, and L∞ errors and
corresponding orders of accuracy of the EL-RK-FV-WENO scheme for (27) with
initial condition (28) at t = 5 with CFL = 1.

mesh L1 error order L2 error order L∞ error order
16× 16 6.79E-03 — 1.11E-02 — 6.68E-02 —
32× 32 5.48E-04 3.63 9.46E-04 3.55 1.18E-02 2.50
64× 64 4.35E-05 3.66 7.15E-05 3.73 1.43E-03 3.05
128× 128 4.37E-06 3.31 6.45E-06 3.47 1.98E-04 2.85
256× 256 5.23E-07 3.06 6.72E-07 3.26 1.73E-05 3.51
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Nonlinear model

Figure 9: (Kelvin-Helmholtz instability problem) Log-log plot of CFL numbers
versus L2 errors with fixed mesh 256× 256 at t = 5 of the EL-RK-FV-WENO
scheme.
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Nonlinear model

(a) Mesh plot (b) Contour plot

Figure 10: (Kelvin-Helmholtz instability problem) Mesh plot and contour plot of
the numerical solution of the EL-RK-FV-WENO scheme with CFL = 10.2 and
with mesh 256× 256 at t = 40.
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Nonlinear model

(a) Deviation of mass (b) Relative deviation of
energy

(c) Relative deviation of
entropy

Figure 11: (Kelvin-Helmholtz instability problem) Deviation of mass, relative
deviation of energy and entropy for the EL-RK-FV-WENO scheme with CFL =
10.2 and with mesh 256× 256 from t = 0 to t = 50 .
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Nonlinear model

Example 3
(Incompressible Navier-Stokes equations) The governing equations are as follows:

ωt + (uω)x + (vω)y = ν(ωxx + ωyy),

∆ψ = ω, (u, v) = (ψy, ψx) ,
(29)

where ω is the vorticity of the flow, (u, v) is the velocity field, and ν is the
kinematic viscosity, which is set to be 1

100 .

We first consider an initial condition given by:

ω(x, y, 0) = −2 sin(x) sin(y), x ∈ [0, 2π], y ∈ [0, 2π] (30)

with the exact solution ω(x, y, t) = −2 sin(x) sin(y) exp(−2tν).
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Nonlinear model

Table 3: (Incompressible Navier-Stokes equations) L1, L2, and L∞ errors and
corresponding orders of accuracy of the EL-RK-FV-WENO scheme for (29) with
initial condition (30) at t = 0.5 with CFL = 1.

mesh L1 error order L2 error order L∞ error order
16× 16 3.90E-03 — 4.65E-03 — 1.14E-02 —
32× 32 4.88E-04 3.00 5.82E-04 3.00 1.45E-03 2.98
64× 64 6.09E-05 3.00 7.27E-05 3.00 1.82E-04 2.99
128× 128 7.61E-06 3.00 9.08E-06 3.00 2.29E-05 2.99
256× 256 9.51E-07 3.00 1.13E-06 3.00 2.86E-06 3.00
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Nonlinear model

Figure 12: (Incompressible Navier-Stokes equations) Log-log plot of CFL numbers
versus L2 errors with fixed mesh 256× 256 at t = 0.5 of the EL-RK-FV-WENO
scheme.
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Nonlinear model

For a more complex scenario, we consider the incompressible Navier-Stokes
equation (29) on [0, 2π]2 with the following initial condition (the vortex patch
problem)

ω(x, y, 0) =


−1, π

2 ≤ x ≤
3π
2 ,

π
4 ≤ y ≤

3π
4 ;

1, π
2 ≤ x ≤

3π
2 ,

5π
4 ≤ y ≤

7π
4 ;

0 otherwise
(31)

with zero boundary condition.
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Nonlinear model

(a) Mesh plot (b) Contour plot

Figure 13: (Vortex patch problem) Mesh plot and contour plot of the numerical
solution of the EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh
256× 256 at t = 5.
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Concluding Remarks

We proposed a novel scheme for high dimensional nonlinear
convection-diffusion simulations that can ensure

1 mass conservation
2 high order accuracy in both space and time
3 high resolution for sharp solution/discontinuous solution by

introducing an improved WENO scheme
4 allowing explicitly large time stepping size of

∆t = O(
√
h)

5 robustness
We presented a novel remapping method that transfers the piecewise
WENO reconstruction polynomial on the Eulerian mesh to a new
piecewise polynomial on the Lagrangian mesh.
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Thanks for your attention!
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