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Abstract

In this paper, we develop high-order, conservative, non-splitting Eulerian-Lagrangian (EL) Runge-
Kutta (RK) finite volume (FV) weighted essentially non-oscillatory (WENO) schemes for convection-
diffusion equations. The proposed EL-RK-FV-WENO scheme defines modified characteristic lines
and evolves the solution along them, significantly relaxing the time-step constraint for the con-
vection term. The main algorithm design challenge arises from the complexity of constructing
accurate and robust reconstructions on dynamically varying Lagrangian meshes. This reconstruc-
tion process is needed for flux evaluations on time-dependent upstream quadrilaterals and time
integrations along moving characteristics. To address this, we propose a strategy that utilizes a
WENO reconstruction on a fixed Eulerian mesh for spatial reconstruction, and updates intermedi-
ate solutions on the Eulerian background mesh for implicit-explicit RK temporal integration. This
strategy leverages efficient reconstruction and remapping algorithms to manage the complexities of
polynomial reconstructions on time-dependent quadrilaterals, while ensuring local mass conserva-
tion. The proposed scheme ensures mass conservation due to the flux-form semi-discretization and
the mass-conservative reconstruction on both background and upstream cells. Extensive numerical

tests have been performed to verify the effectiveness of the proposed scheme.
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1. Introduction

Simulating convection-diffusion phenomena has a wide range of applications, including fluid
dynamics [37, 22, 11], materials science [31, 34, 8], and geophysics [30, 29]. In this paper, we

consider a scalar convection-diffusion equation:
ut + Vx - (F(u,x,t)) = eAu, (1.1)

where € > 0. Existing methods include the Eulerian [14, 19] and Lagrangian approaches [12, 4, 5, 6].
The Eulerian approach evolves the equation upon a fixed spatial mesh (or Eulerian mesh), and
such methods are usually robust and relatively easy to implement, but they suffer from time-step
constraints. The Lagrangian approach follows characteristics in time evolution by generating a
Lagrangian mesh that moves with the velocity field, allowing for a larger time-step size compared
with Eulerian schemes. However, the moving Lagrangian mesh can be greatly distorted, leading to
significant challenges in analysis and implementation. Between the two approaches, there are the
semi-Lagrangian (SL) approach [33, 36, 32, 17], the Eulerian-Lagrangian (EL) approach [1, 2, 26],
and the arbitrary Lagrangian-Eulerian (ALE) approach [9, 25, 39]. Both the SL and EL approaches
utilize a fixed background mesh and accurately or approximately track information propagation
along characteristics, which helps them ease the numerical time-step constraint. The schemes
from the ALE approach consider a dynamically moving mesh. These approaches aim to balance
between the Eulerian and Lagrangian approaches in various ways, tailored for better efficiency of
computational algorithms in different settings.

In this paper, we continue our development of the EL Runge-Kutta (RK) schemes [10, 26],
but now in a truly multi-dimensional finite volume (FV) fashion for nonlinear convection-diffusion
problems. In the finite volume setting, we need to update only one degree of freedom per cell, as
opposed to multiple ones, compared with the previous EL-RK discontinuous Garlerkin (DG) scheme
[10]. Building upon the EL-RK framework, we introduce a modified velocity field as a first-order
approximation of the analytic velocity field, offering triple benefits: firstly, the modified velocity
field has straight characteristic lines, leading to upstream cells with straight edges that are easier
to be evaluated than polygons with curved edges; secondly, tracking characteristics approximately
call allow a greatly relaxed time-stepping constraint compared with explicit Eulerian methods;

thirdly, the EL framework offers flexibility in treating nonlinearity, while integrating diffusion terms,



thereby presenting a truly multi-dimensional EL finite volume scheme compared to our earlier work
in [17, 26].

Yet new challenges arise in reconstructing high-order polynomials on dynamically varying La-
grangian upstream cells; robust and accurate weighted essentially non-oscillatory (WENO) recon-
structions on time-dependent upstream polygons can be computationally complex and expensive.
Furthermore, performing high-order time integration along moving characteristics brings new com-
plications in algorithm design. Below, we elaborate major computational roadblocks and our pro-

posed strategy in the following two aspects:

e Spatial reconstruction. The EL RK formulation necessitates flux evaluations at the interface
of upstream cells; thus, we need to reconstruct piecewise polynomials on upstream quadrilat-
erals. Performing WENO reconstruction of polynomials on distorted upstream quadrilaterals,
e.g., see the red mesh in Figure 2.2b, can be computationally involved. Further, shapes of
these upstream cells differ in every time-step, leading to expensive mesh-dependent local
computations. To address such challenges, we propose to (a) perform a robust and efficient
WENO reconstruction of piecewise polynomials on the background Eulerian mesh; and (b)
leverage a remapping algorithm to compute cell averages on upstream cells from cell aver-
ages on the background Eulerian mesh in a mass conservative fashion [21, 38]. Finally, we
perform piecewise polynomial reconstruction on upstream quadrilaterals, with preservation
of cell averages computed in (b), while utilizing the piecewise polynomials on Eulerian mesh

reconstructed in (a) for accuracy consideration.

o Implicit-explicit (IMEX) RK temporal integration along linear approximation of characteris-
tics. A major computational challenge in performing method-of-lines time integrations along
moving meshes is the complexity again in polynomial reconstructions of solutions on quadri-
lateral meshes that are time varying. To address this issue, we propose to update intermediate
IMEX solutions at the background Eulerian mesh as in [17, 26], for which efficient reconstruc-
tion and the remapping algorithms can be utilized to faciliate the polynomial reconstruction

on time-dependent quadrilaterals as mentioned above.

We emphasize that efficient polynomial reconstruction on a fixed Eulerian mesh serves as a cor-

nerstone in our EL-RK algorithm, upon which polynomial reconstructions on distorted upstream



quadrilaterals are performed. Indeed, WENO reconstructions on a background Eulerian mesh have
been well developed in the literature [24, 18, 40, 15, 38]. In this paper, we further improve upon our
previous work [38] and propose a new 2D WENO reconstruction. This new approach strikes a good
balance between controlling numerical oscillations and achieving optimal accuracy, by optimizing
small stencil polynomial approximations and the weighting strategy.

The rest of the paper is organized as follows. Section 2 presents the proposed EL-RK-FV-WENO
schemes; Section 3 presents extensive numerical results showcasing the scheme’s effectiveness. Fi-

nally, we conclude in Section 4.
2. EL-RK-FV-WENO schemes

In Section 2.1, we introduce a first-order EL-RK-FV scheme for a linear convection-diffusion
equation. Then, building upon the basic concepts introduced in Section 2.1, we discuss the con-
struction of high-order EL-RK-FV-WENO schemes in Section 2.2. Finally, the extension of the

proposed EL-RK-FV-WENO scheme to a nonlinear model is presented in Section 2.3.
2.1. First-order EL-RK-FV scheme

Consider

us + (a(z, y, hu)e + (b(z, y, t)u)y = €(uaz + uyy). (2.1)

We assume a rectangle computational domain denoted by Q := [z, xr] X [yp,yr| with following

partitions for each dimension

yB:y%<y%<...<yj_%<yj+%<...<yN+%:yT

with z; = (ﬂc%% +$i+%)/2, yj = (y];% —I—yj+%)/2, Ax; = T =T, Ay; = Yirl — Y b
IF =2, 1,2, 1], I]y = [yj_;,ijr;] and I; j := I x ij, Vi, 7. We define the numerical solutions
2 2 2 2

on the Eulerian mesh as {u}';}, which approximate the averages of the u(z,y,t") over the Eulerian
cells {; ;}, i.e. {ﬁ JI1,, w(@,y, t")dzdy}.
To derive an EL-RK-FV formulation, we first define a modified velocity field (a(x, y,t), B(z,y,t)).

The definition of (a(x,y,t), B(x,y,t)) is summarized as follows.



1. At t =" a(z,y,t") and B(z,y,t" ") belong to Q'(1; ;) satisfying

a(‘rii%vyji%v = a(xij:%ayjj:%a

L . (2.2)
B(xij:%ayjj:%7tn+ ) = b(xiiévyji%;twr )
2. We define a dynamic region (see Figure 2.1)
fz,](t) = {(Ia y)|($7 y) = (‘%(tﬂ (67 7, tn+1))7 g(ta (57 7, tn+1)))a (67 77) € Ii,j}’ (23)

where (Z(t; (€, n,t"1)), 5(t; (€, m,t"1))) represents the straight line going through (&, 7, t"+1)

satisfying
{5(15; (& t" ) = £+ (t — t"T)a(€,n, t" ), (2.4)
G(t; (& m, 1) = n+ (¢ —t"THB(E, n, ). '
We call (2.4) a modified characteristic line.
3. For t € [t", t"1) and (Z(t; (&, 0, ")), §(t; (&, ,t"T1))) € I (1),
{a(i(t; (& "), 3t (& m 1Y) = (g, m L), 25)
B@(t; (&, m, "), Gt (&, n,t7TY))) = B(E, m, t" ).

Figure 2.1: Schematic illustration for the dynamic region f” (t).

With the definitions above, we can derive

d
% //I;z‘,j(t) U(IE, y,t)diﬂdy
://~ ug(x,y, t)dedy + /~ (o, B)u - nds
1i,5(t) ol ;(t)
= //~ u(z,y, t)dedy + //~ [(au)g + (bu)y] dzdy (2.6)
1i5(t) 1i5(t)

/~ (a,b)u - nds + /~ (a0, B)u - nds
I, ;(t) oI, ;(t)

:—/~ (a—04,()—B)u-nd$—i—e//~ Audxdy.
1 5(t)

ol;,;(t)
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We define that F(u,z,y,t) := ((a — a)u, (b — f)u) and provide the concise EL-FV formulation:

d
— . u(x,y,t d:cdy:—/~ F(u,x,y,t 'nds—}-e//~ Audxdy
dt //L;,j(t) ( ) oI, ;(t) ( ) I; 5 (t) (27)

= Fij(ust) + Gij(ust).
To evaluate the right-hand side (RHS) of (2.7), we introduce the following notation for semi-

discretization:
dNi . t — _ ~ —
“C’i;() = Fi,;(U;t) + G ;(T; 1), (2.8)

where

e the notation - specifies that the integral value corresponds to the characteristic spatial region

L ;(1),

e U; j(t) approximates ff'fi,j(t) u(z,y, t)dzdy,

° fz‘,j(US t) approximates fi,j(u;t)a

Q’i’j (ﬁ; t) approximates Qi,j(u; t>7

o U:= (T;(t) N, Ny Tepresents the finite volumes such that

1
7 |Ii,j| I; ;
Similar to U, we can also represent (2.8) globally as follows:
dU(t)  —=— . = —
di) = F(U;t) + 6(Ust), (2.10)

where F = (j_:ivj)NzNy and G = (gi’j)N,Ny' Coupling (2.10) with the first-order forward-
backward Euler IMEX method in [3] yields the first-order EL-RK-FV scheme:

MU"" = U" + AtF(U", ") + At (eMDU" ), (2.11)

where
e M is a diagonal matrix such that MU = (|Ii,j ]ﬂ?;rl)N oy
), z Ny

e U™ approximates (ffzj(tn)u(x,yjtn)dxdy)]v ,

vy



e D is a differential matrix such that

—n+1 . 1
DU “approximates < / Audmdy) .
Ll JJ 1 NNy

+

As shown, the diffusion term in (2.11) is implicit. Consequently, T is obtained by solving the

following linear system:
M (I — AteD) U™ = U™ + AtF (T, ). (2.12)

In (2.11), the methods for approximating the F and G terms with first-order accuracy are not
discussed. High-order spatial approximations for these terms will be introduced in the next section.

The first-order approximations can be viewed as simplified versions of their high-order counterparts.

Remark 2.1. (Empirical time-step constraint of the convection term for stability) Similar to the

flux-form finite volume method in [28], where v = 8 = 0, we require that

At < 1 AxAy

— max |a—q] max [b—p| - _ _
fa—al 4 mas Aymax |a — a| + Az max |b — [

(2.13)

with Az := max{Az;} and Ay := max{Ay;}. Furthermore, we stipulate that I; ;(t") remains a
convex quadrilateral. Otherwise, ju (t") might become ill-posed in various situations. Therefore,

it suffices to require that any three vertices of E] (t") cannot be collinear. In other words,

// _ dazdy >0, le{LT RT,LB,RB}, (2.14)
A(1,5(1))
where
Apr(Lit) = {(z,y)|(z,y) = (@(t; (&0, "), §(t; (&, n,t" ), (2.15)
iy T €z 1)Ay/Aw < <y, € [r 1 0]) (2.16)

Similar definitions hold for the other {A;(T; ;(t))}. Through tedious derivation and omitting some
higher-order terms, we can establish that (2.14) implies

1

At < |
’a/:l?(miv yj:tn+1)’ + ‘by(xi,yj,tn"—l)‘

(2.17)

By combining (2.13) with (2.17), and considering that |a —al, |b— 8| = O(At) + O(Ax?) + O(Ay?),

we arrive at an approximate time-step constraint:

At ~ /min{Azx, Ay}. (2.18)



2.2. High-order EL-RK-FV-WENQO schemes

In this section, we introduce the high-order EL-RK-FV-WENO schemes by first focusing on
constructing the high-order approximations of the convection and the diffusion terms of the semi-
discretization (2.8) in Section 2.2.1 and Section 2.2.2 respectively. Finally, the coupling of the

semi-discretization with high-order IMEX RK methods is discussed in Section 2.2.3.

2.2.1. Flux approximation

As analyzed in Remark 2.1, the design of the flux function at the boundaries of dynamical-
ly changing, nonuniform Lagrangian cells significantly relaxes the time-step constraint. However,
compared to the flux function of the Eulerian approach, located at {0I; ;}, this brings significant
challenges in terms of designing an efficient spatial discretization for such a framework. To address
this, our strategy contains three basic steps. First, we conduct an efficient WENO-type reconstruc-
tion on the fixed Eulerian mesh. Second, an efficient remapping procedure is designed to map the
piecewise WENO reconstruction polynomial with respect to the Eulerian mesh {I; ;} to another
piecewise polynomial with respect to the Lagrangian mesh {1:” (t)}. Finally, we use the new piece-
wise polynomial to provide upwind point values at the boundaries of {8.7”(75)} and approximate

the flux function. The details of these three steps are concluded as follows:

Step 1: Construct a piecewise polynomial with respect to the Eulerian mesh, {I; ;}.

We construct a piecewise reconstruction polynomial u"VENO (g, y) such that

° uWENO(x,y)IIM = ux\;ENO(:L‘,y) with u%ENO € PQ(IM) for all 4, 7,
e cach uz‘;ENO is constructed based on the information @; j(t) along with its eight neighbor

finite volumes,
o [I1, uWVENO (3 y)dxdy = Ax;Ay;a; j(t) for all 4, j,
o WWPNO(z,y) = u(w,y,t) + O(Az?), (z,y) € Q.

WENO(

Here, we summarize the details of constructing « x,y) in Appendix Appendix A for con-

WENO(x y).

ciseness. A schematic is offered in Figure 2.2a to demonstrate the discontinuity of u
We use various colors to shade different Eulerian cells, indicating that uWENO(:E, y) has dis-
tinct polynomial expressions in each cell. We would like to emphasize that the WENO-ZQ

reconstruction method introduced in Appendix Appendix A is a more advanced version than



the one we previously designed, as detailed in [38]. In particular, in the numerical section,
we observe that the solution of the WENO reconstruction in [38] introduce a small numeri-
cal wiggle. We redesigned the small stencils and part of the weighting strategy. The newly
designed WENO-ZQ method presented in this paper significantly enhances the control of nu-
merical oscillation, addressing the suboptimal performance of the previously designed method

in managing nonphysical oscillations.

AN

b j+1 /\

i+l

: * iy

J / 1

i—1 j— \/

i-1 i i+1 i—-1 i+1
(a) Piecewise polynomial (b) uyENO (2, y)
uWENO (1,7 y)
Figure 2.2: Schematic illustrations of uWFNO(z,y) and uWENO( L Y)-

Step 2: Construct a Piecewise Polynomial on the Lagrangian mesh {EJ (t)} (Remapping).

Step 1 is an efficient reconstruction method and is inevitable, as will be shown in Section 2.2.3.
The basic idea of this remapping step is that we want to conduct an efficient modification to
uWENO (2 4)) instead of involving a new reconstruction on the Lagrangian mesh. The resulting

new piecewise polynomial, denoted by uWENO( ,y), satisfies the following conditions:

ﬂWENO( ~WENO (

z y)’I S = Wi ,y) with uWENO € PQ( j(t)) for all 4, j,

o [fi @V @, y)dady = [ff o uVENO (@, y)dady for all i, j,
. ﬂWEN%c, y) = u(z,y,t) + 0<A:c3>, (z,y) € .

aWVENO (22 4)) to provide upwind point value

Here, the first condition refers to the capacity of u
information for the flux approximation, the second condition is related to the mass conser-
vation property, and the third one is an accuracy requirement. We summarize the procedure

for constructing @WFNO(z,y) in a given Lagrangian cell, fz] (t), as follows (see Figure 2.2b):



WENO(

Step 2.1: Compute the exact “mass” of u x,y) over Tw (1), i.e.

Uj j = //~ wWVENO () dzdy. (2.19)
1;,5()

The integrand in Equation (2.19) is discontinuous over fzj(t) A numerical integral
for Equation (2.19) contains two basic steps. First, a clipping procedure is conducted

WENO (2.4 is continuous in each of

to divide I ;(t) into smaller polygons such that u
them. Second, a numerical integration is conducted in each polygon, and the results are
summed to obtain the final integral. Following these two basic steps, there are different

implementation methods [13, 21, 38]. For a detailed implementation, we refer to our

previous work [38].

Step 2.2: Find all Eulerian cells that intersect with f”(t) We define that K = {(p,q)|Ipq N
I;j(t) # 0}. For instance, in Figure 2.2b, K = {(i—1,j+1), (i, j+1), (i—1,7), (i,4), (i, j—
1)}

Step 2.3: Compute the integrals of the candidate P? polynomials over 1:” (t), i.e.

= / - uy N0 (x,y)dady,  (p,q) € K. (2.20)
%]

Step 2.4: Choose the index (p, ) such that @} — @, ;| reaches the minimum, i.e.

|uz,] u%]| (pI,I(;)HElIC{‘uZ’] U’L,j‘} ( )

Step 2.5: Define a P? polynomial, denoted by ﬂ%ENO(az, y), on fz] (t) such that

1 ~ o~ 1
~WENO WENO ~(p,q) ~
Uy (x,y) = up~=" (2, y)|5 ,,— = Th g p— Ui j, (2.22)
" (ba) Ba® L)Y L]

where |5 (1) Means that we redefine the domain of definition to be I; ;(t) for a given
2,

)

function. As an example, consider the case demonstrated in Figure 2.2b where (p, §) =

V\gENO (z,y) and adjust

(1,7). In this case, we simply change the domain of definition for us

it according to (2.22).

Step 3: Construct the final flux approximation.

The final flux approximation is given by the following conservative formulation

Fo@it)yi= = [ F(@™0,a,.) ds, (2.23)



where

F(aVENO gy t) = W (2, y, )T, (2, ) (2.24)
with
W(z,y,t) :==(a—a,b—p) n (2.25)
and
G WENO W >0
ﬁ??(l’ y) = {~V’\;ENO,(§<‘; ) ’ (2.26)
u; (x,y), W <O0.
Here, u 7 VENOext x,1) are the exterior solution with respect to corresponding edge of I +(b).
Uy ,J )]

At the end of this section, we prove two basic properties of uWENO(x, Y).
Proposition 2.2. (Mass conservation for the remapping method) Local integrals of aWENO gyer
{f” (t)} are consistent with the integrals of uWENO,
Proof.
//~ aWVENO (g ) dxdy
I; j(t
_// < WENO y)|~ R 1 a(pQ) R 1 ﬂij) dl‘dy
Lii(®) Ba® L0 L))" (2.27)
= G P g,
Z//~ uWVENO (g, ) dxdy.
1i,5(t)
O

Proposition 2.3. (Accuracy of the remapping method) Assuming Az ~ Ay, we have the following

estimate for %"V FNO:
aWVENO (1 y) = u(z,y, t) + O(Az3). (2.28)
Proof. For (%,7) € I ;(t),
@"ENO(F, 9) — u(@ 1)
] (“‘V%m@’ Mo~ |E,j1<t>rﬂ(5q) " I 1<t>| ) R (2:29)

)

WENO /~ ~
( (pq) (z, )’1 O u(,7,t)

11



x 4 7 91" 1 weno 5
:k—O [(x_xg) 8? * (y_yg) ay} (u(fﬁvg) (’) _u('v'vt)) |(5E;73f;) +O(A.’L‘ )
Following the same procedure in Remark Appendix A.1, we can easily prove that

1D (w¥ENO () = u(, 1)) oo = O(AT*®) (2:30)

Combining (2.30) with the fact that T — 25 = O(At), y — yz = O(At), and At ~ Az ~ Ay, we have

wiB @ D) ) —u(@ 5.0) = 0(A®). (2.31)

_ 1 WENO WENO
“L0 </Aj(t) UGS (x,y)dxdy—/z_}j(t)u (z,y)dzdy (2.32)

Since (2.31) is true for all (Z,y) € fw(t) and
uWVENO (1 9) —u(z,y,t) = O(Az®) for all (z,y) € Q (2.33)

from Remark Appendix A.1, we immediately have

1 (~(1~>5) ~ ) 3
= w; " — ;) = O(Az?). (2.34)
L)) ’

2.2.2. Approximation of the diffusion term

The strategy of constructing gNH (U;t) contains three steps. First, based on the finite volume
information of u, we recover high-order finite volume information of Au (assuming uniform mesh)
by introducing a differential matrix. Second, we reconstruct a high-order piecewise polynomial to
approximate Au. Finally, we evaluate the corresponding integral over E](t) and obtain 5” (U t).
We emphasize here that the implicit treatment of the diffusion term is performed on the Eulerian
mesh. This means that the differential matrix introduced in the following Step 1 is necessary, as

will be shown in Section 2.2.3. The details of these three steps are summarized as follows:

12



Step 1: Recover high-order finite volume information of Au.

‘We recover

AU := DU, (2.35)

where D is the differential matrix assembled by the following local operators

Ui-2,j Wij—2

X [ 1 4 5 4 1 1 =L N 1 il

YT e R R R L T -
“J 12 3 2 3 12 Azg?2 | " Ay2 | _ " '

Ui+1,5 Ui, j+1

Ui42,5 Us j+2

for all ¢, j, and corresponding boundary conditions.

Step 2: Recover a piecewise reconstruction polynomial of Au.

We utilize the same polynomial ¢o(z,y) in Appendix Appendix A as the reconstruction for-

mula and denote the final piecewise polynomial by Au™¢(z,y).

Step 3: Compute the integral of Au™(x,y) as the final approximation.

Gij(Tst)
=c //~ Audzdy ~ € //~ Au'(x,y)dxdy = eELM (ﬁ; t) for all 1, j, (2.36)
1i5(t) 1i5(t)
where the integral of piesewise polynomial is accomplished by the method of our previous
work [38].
2.2.3. High-order IMEX RK temporal discretization
In light of the high-order spatial discretization presented in (2.8), (2.23), and (2.36), we introduce

the IMEX RK temporal discretizations. Under the IMEX setting, we evolve the convection flux

term explicitly while evolving the diffusion term implicitly. In addition, the time-step constraint is

controlled by the explicit convection part, with At ~ y/min{Az, Ay}.
An IMEX RK scheme can be represented by the following two butcher tables [3]:

Implicit Scheme Explicit Scheme
0/0 O o --- 0 0 0 0 0O --- 0
C1 0 all 0 cee 0 C1 d21 0 0 s 0
c2 |0 az azp --- 0 co |azg azx 0 -+ 0
cs |0 as1 asa - Qs Co—1 do,l &0,2 &0,3 - 0
0 b by -+ b by b bs - by

13



A triplet (s,o,p) is used to demonstrate that the IMEX scheme uses an s-stage implicit scheme

and a o-stage explicit scheme achieving pth-order accuracy.

The butcher table of first-order IMEX scheme in (2.11), which is also called IMEX(1,1,1) in [3],

is
Implicit Scheme Explicit Scheme
0[{0 O 0[{0 O
110 1 111 0
01 10

The second-order IMEX(1,2,2) scheme in [3] is represented by the following butcher tables:
Implicit Scheme Explicit Scheme

0
0
1

Figure 2.3: Schematic illustration of full discretization with IMEX(1,2,2).

One noteworthy complexity of IMEX(1,2,2), in contrast to IMEX(1,1,1), is its involvement of

the intermediate time level "2 (see Figure 2.3a). To construct a full discretization based on

IMEX(1,2,2), we define a new characteristic region Q;; = {(z,y,t)|(z,y) € L ;(t + FAL), te€

[t",t”+%]} for each mesh index (i,7) (see Figure 2.3b), following a similar strategy as proposed

in [26]. For {5”}, we define an operator W such that W(U, t"*%) represents the corresponding

WENO piecewise polynomial with respect to {ﬁj(t”*%*a)}, which is constructed based on U.
Furthermore, we define that F(U, ") := (f” (U, t”*o‘)> with
NuNy

Fij (U, ") =

—/~ L F(W(U, ), 2y, ) ds,  for all i, . (2.37)
8Ii,j(tn+§+a)

14



Then, the second-order fully discrete scheme is provided as follows (see Figure 2.3):

MUY = U + %At?—‘(ﬁ", ") + %At (evDT™) (2.38)

MU = U+ AFOY, 1743) + Aig(TY, 17+3), (2.39)
where

e the notation - is used to indicate that the corresponding values or operations refer to specific

slices of the characteristic region €2; ;,

o U —: (fffi,j(t”%) w (ﬁ”) dxdy) o, (see Figure 2.3b).

The design of the additional characteristic region ﬁl ; helps us avoid the expansive reconstruction
procedure associated with nonuniform Lagrangian meshes at the intermediate time level, which
dynamically change as time evolves. For the numerical tests, we employ IMEX(2,3,3) as described
in [3] to construct a third-order fully discretized EL-RK-FV-WENO-IMEX scheme. We omit the
details for IMEX(2,3,3) since the key techniques have already been covered in the IMEX(1,2,2)

case.
2.3. EL-RK-FV-WENO scheme for the nonlinear convection-diffusion equation
Consider

ut + (f1(u)e + (f2(u))y = €(Uaz + uyy)- (2.40)

To extend the proposed scheme for (2.40), we further design two modifications with very limited
extra cost. The two modifications utilize the EL-RK-FV framework designed in the previous
sections and no longer require the adoption of one temporal method within another as in [10]. We

summarize the details of these two modifications as follows:

1. Redesign the modified velocity field.

The construction of the original modified velocity field requires the exact velocity field at
t = t"*1 which is unknown for nonlinear models. We redesign that (a(z,y,t), 8(z,y,t)) is

defined by first applying interpolation at ¢t = ¢"*! such that
1 TN
O‘($ii% , yji%? tn+ ) = f{(W(U ))|(mii%,y.

- / . (2.41)
B(:Eii%ayji%at ):fQ(W(U ))|(xii%,y.
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and then following the same procedure as in (2.3)-(2.5). This modified velocity field can still
give us the same time-step constraint At ~ \/m if we apply similar analysis as
in Remark 2.1. This flexibility of defining the modified velocity field is of vital importance.
In our previous semi-Lagrangian work for convection-diffusion equations [17], the necessity of

an exact velocity field presents challenges in adapting the approach for nonlinear models.

2. Recover the velocity fields at intermediate time levels.

The velocity field for ¢ € (¢",¢"*1], which is required for evaluating numerical fluxs, is un-
known for nonlinear models. For this issue, we simply use the predicted solutions at the
intermediate time levels to recover corresponding velocity fields. For example, in (2.39), the
exact velocity field (a(m,y,t”+%), b(ac,y,t”+%)) is replaced with (f{(W(U(l))), fé(W(U(l))))
for 7 (U0, 1+4).

3. Numerical tests

In this section, we apply the proposed EL-RK-FV-WENO scheme to four challenging problems.
The first two problems involve linear equations: the swirling deformation flow, characterized by pure
convection terms, and the 0D2V Leonard-Bernstein linearized Fokker-Planck equation. The latter
two are nonlinear models: the Kelvin-Helmholtz instability problem, again with pure convection
terms, and the incompressible Navier-Stokes equations. We use these four cases to demonstrate the
effectiveness and the designed properties of the proposed scheme. The time-steps in the following
are defined by:

At = CFL (3.1)

max{|f’(u max{|g’(u)|}’
a{gx( Wy a{kly( )}

where (f'(u), g’(u)) represents the corresponding velocity field. For pure convection simulation, we

use the third-order Runge-Kutta temporal discretization with the following butcher table:

0] 0 0 O
1] 1
513 00
1/-1 2 0
‘ I 21
6 3 6
For convection-diffusion simulation, we apply IMEX(2,3,3) in [3] with the following butcher tables:
Implicit Scheme Explicit Scheme
0 0 0 0 0 0 0 0
ot 0 ol 0 ol ol 0 0
1—~]0 1—=2v » l—vy|yv—=1 2(1—=v) O
0 T T 0 I T
2 2 2 2
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where v = (3 4 /3)/6.
3.1. Linear models

Example 3.1. (Swirling deformation flow). Consider the following equation:

up — (271'(:082(g)sin(y)g(t)u);E + (27rsin(x)0052(%)g(t)u)y =0, z, y€[-mm], (3.2)

where g(t) = cos(nt/T) with T" = 1.5. We first consider (3.2) with the following smooth initial

condition:

( beno(TCOTN6 e b b
rdcos if r°(x) < rg,
U(x,y,O)zi 0e05(arg ) () <rg (3.3)

0, otherwise,

where r§ = 0.3, r’(x) = \/(x —28)2 + (y — y8)? and the center of the cosine bell (z§,48) =
(0.37,0). Table 3.1 shows the L', L?, and L™ errors and corresponding orders of accuracy for the
proposed scheme. As indicated, the expected 3rd-order spatial accuracy is achieved through mesh
refinement.

Table 3.1: (Swirling deformation flow) L', L2, and L* errors and corresponding orders of accuracy
of the EL-RK-FV-WENO scheme for (3.2) with initial condition (3.3) at ¢t = 1.5 with CFL = 1.

mesh L' error  order | L? error order | L® error order
20x 20 | 8.37E-03 — | 4.51E-02 7.40E-01 —

40x 40 | 3.85E-03 1.12 | 2.52E-02 0.84 | 4.74E-01 0.64
80x 80 | 1.16E-03 1.72 | 8.06E-03 1.64 | 1.66E-01 1.52
160x 160 | 2.22E-04 2.39 | 1.50E-03 2.43 | 3.24E-02 2.35
320x 320 | 3.01E-05 2.88 | 2.03E-04 2.88 | 4.86E-03 2.74

In Figure 3.4, by varying the CFL number while fixing the spatial mesh, we investigate the
temporal order of accuracy. For the results using mesh 160 x 160, the proposed scheme demonstrates
3rd-order temporal accuracy and is stable when CFL is less than 21. For the mesh 320x 320, stability
is observed at least up to CFL = 30, corroborating our time-step constraint estimate (2.18).

To validate the non-oscillatory nature of the proposed WENO reconstruction, we consider a
discontinuous initial condition featuring a cylinder with a notch, a cone, and a smooth bell as
shown in Figure 3.5. Figures 3.6 and 3.7 display the mesh plots and contour plots of the numerical
solutions at ¢ = 0.75 and ¢ = 1.5. The swirling deformation flow significantly deforms the solution
at half the period (¢t = 0.75) and then reforms it back to its initial state at t = 1.5. In the right

panel of Figure 3.7, we test the proposed scheme using the WENO reconstruction in [38], and we
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Order = 3

L? error
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CFL

Figure 3.4: (Swirling deformation flow) Log-log plot of CFL numbers versus L? errors with fixed
meshes 160 x 160 and 320 x 320 at t = 1.5 of the EL-RK-FV-WENO scheme.

observed small numerical wiggles. While in the left panel of Figure 3.7, the WENO reconstruction

method in this paper effectively controls numerical oscillations as demonstrated.

3
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X

(a) Mesh plot (b) Contour plot

Figure 3.5: (Swirling deformation flow) Mesh plot and contour plot of a discontinuous initial
condition.

In summary, this example illustrates the effectiveness of the proposed EL-RK-FV evolving strat-
egy for the convection terms. This strategy, which involves remapping from Eulerian to Lagrangian
spatial approximations, not only achieves high-order spatial and temporal accuracy but also allows

for large time-steps while maintaining a non-oscillatory property.

Example 3.2. (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Consider the
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(a) Mesh plot (b) Contour plot

Figure 3.6: (Swirling deformation flow) Mesh plot and contour plot of the numerical solution of
the EL-RK-FV-WENO scheme with CFL = 10.2 and mesh size 100 x 100 at ¢t = 0.75.

= 0.5
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(a) Mesh plot (b) Mesh plot

Figure 3.7: (Swirling deformation flow) Mesh plots of the numerical solution of the EL-RK-FV-
WENO scheme (left) and WENO scheme in [38] using the same setting (right) with CFL = 10.2
and mesh size 100 x 100 at ¢t = 1.5.
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following equation:

fe+ % ((vx - @w)f)vz B 1 ((vy B 6y)f)v - %D (fvsz + fvyvy) ’ Uz, Uy € [_27T7 277] (3.4)

€ Yy

with zero boundary conditions and an equilibrium solution by the given Maxwellian:

= \2 = \2
fM(Ux,Uy) _ QWZ%T exp <(U;c ’Ux)Q;‘IEUy Uy) ) ’ (3'5)

where, e = 1, gas constant R = 1/6, temperature T' = 3, thermal velocity vy, = V2RT = 2D =1,
number density n = 7, and bulk velocities v, = v, = 0. For spatial and temporal accuracy tests,
we choose f(vg,vy,0) = far(vs,vy). In Table 3.2, we present the L', L?, and L* errors and the
corresponding orders of accuracy for the proposed scheme. The results demonstrate a consistent

3rd-order spatial accuracy.

Table 3.2: (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) L!, L? and L*
errors and corresponding orders of accuracy of the EL-RK-FV-WENO scheme for (3.4) with initial
condition (3.5) at ¢ = 0.5 with CFL = 1.

mesh L' error  order | L? error order | L® error order
20x 20 | 2.18E-03 — 1.38E-02 — 2.95E-01 —

40x 40 | 3.01E-04 2.85 | 2.05E-03 2.75 | 9.50E-02 1.63
80x 80 | 3.33E-05 3.18 | 1.58E-04 3.70 | 6.40E-03  3.89
160x 160 | 4.10E-06 3.02 | 1.80E-05 3.13 | 2.88E-04 4.47
320x 320 | 4.77E-07 3.10 | 2.10E-06 3.11 | 3.20E-05 3.17

By fixing the spatial mesh and varying the CFL number, the temporal order of accuracy is
investigated in Figure 3.8. The proposed scheme exhibits 3rd-order temporal accuracy and allows
the use of large time-steps, as evidenced by the stability for high CFL numbers.

To test the relaxation of the system, we choose the initial condition f(vg,vy,t = 0) = far1 (va, vy)+
fr2(vg, vy), where the parameters of each Maxwellian, far; and far2, are detailed in Table 3.3. The
two Maxwellians are shifted along the v, direction with 7, = 0. The evolution of the numerical
results, illustrated in Figure 3.9, shows that after ¢ > 3, there is no discernible difference between
the numerical solution and the solution at ¢t = 3, validating the efficacy of the proposed scheme.

In Figure 3.10, we present the capability of the proposed scheme in preserving various physical
conservative quantities. The results indicate that while the scheme is effective in conserving mass,
it does not maintain the other quantities to the machine precision.

To encapsulate, this example primarily demonstrates the effectiveness of the IMEX temporal

20



L? error

104t

—4—EL-FV-WENO with mesh 160 x 160

Order=3

10 20 30

CFL

Figure 3.8: (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Log-log plot of CFL
numbers versus L? errors with fixed mesh 160 x 160 at ¢t = 0.5 for the EL-RK-FV-WENO scheme.
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Figure 3.9: (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Contour plots of the
numerical results of the EL-RK-FV-WENO scheme with CFL = 3 and mesh size 100 x 100 at t = 0
(initial condition), t = 0.2, t = 0.4, t = 0.6, t = 3, and ¢t = 20.
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Figure 3.10: (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Relative deviation
(or deviation) of number density, bulk velocity in v,, bulk velocity in v,, and temperature for the
EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh 160 x 160 from t =0 to t = 20 .
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o fu2
n 1.990964530353041 1.150628123236752

U, | 0.4979792385268875 | -0.8616676237412346
Ty 0 0
T | 2.46518981703837 | 0.4107062104302872

Table 3.3: (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Settings of the
Maxwellians far1 and faso.

discretization, which combines the implicit solver for the diffussion term and the EL evolving

strategy for the convection terms, enabling the use of large time-steps.
3.2. Nonlinear models

Example 3.3. (Kelvin-Helmholtz instability problem) Consider the guiding center Vlasov model

[27, 16]:
Pt + \E (ELP) = 07
(3.6)
—A(I) =P, EJ— = (_(I)y,q)x)v
with the periodic boundary condition and the following initial condition:
p(x,y,0) = sin(y) + 0.015cos(0.5z), = € [0,4n], y € [0,2n], (3.7)

where p is the charge density and E is the electric field. We validate the 3rd-order spatial and
temporal accuracy of the proposed scheme in Table 3.4 and Figure 3.11. Additionally, the stability

of the scheme with large time-steps up to CFL = 50 is verified.

Table 3.4: (Kelvin-Helmholtz instability problem) L', L2, and L™ errors and corresponding orders
of accuracy of the EL-RK-FV-WENO scheme for (3.6) with initial condition (3.7) at ¢ = 5 with
CFL = 1.

mesh L' error order | L? error order | L™ error order
16x 16 | 6.79E-03 — 1.11E-02 — 6.68E-02 —

32x 32 | 548E-04 3.63 | 9.46E-04 3.55 | 1.18E-02  2.50
64x 64 | 4.35E-05 3.66 | 7.15E-05 3.73 | 1.43E-03 3.05
128% 128 | 4.37TE-06 3.31 | 6.45E-06 3.47 | 1.98E-04 2.85
256x 256 | 5.23E-07 3.06 | 6.72E-07 3.26 | 1.73E-05 3.51

In Figure 3.12, we display the mesh plot and contour plot of the numerical solution of the
EL-RK-FV-WENO scheme at ¢t = 40. The result is comparable with the one of our fourth-order
SL-FV-WENO scheme in [38].
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Figure 3.11: (Kelvin-Helmholtz instability problem) Log-log plot of CFL numbers versus L? errors
with fixed mesh 256 x 256 at t = 5 of the EL-RK-FV-WENO scheme.

(a) Mesh plot (b) Contour plot

Figure 3.12: (Kelvin-Helmholtz instability problem) Mesh plot and contour plot of the numerical
solution of the EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh 256 x 256 at ¢ = 40.
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In Figure 3.13, we show the deviation of mass, relative deviation of energy and entropy of the
proposed scheme from ¢ = 0 to ¢ = 50. As shown, the proposed scheme is mass conservative. The

magnitudes of relative deviation of energy and entropy results are comparable with the ones in [38].
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(a) Deviation of mass (b) Relative deviation of energy (c) Relative deviation of entropy

Figure 3.13: (Kelvin-Helmholtz instability problem) Deviation of mass, relative deviation of energy
and entropy for the EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh 256 x 256 from
t=0tot=050.

This nonlinear example effectively showcases the success of the generalization strategy for non-
linear model outlined in Section 2.3, which is achieved with minimal additional cost.
Example 3.4. (Incompressible Navier-Stokes equations) The governing equations are as follows:
wi + (uw)g + (vw)y = v(wez + wyy),

Aw = w, (u7 1}) = (%’ d}x) 5

where w is the vorticity of the flow, (u,v) is the velocity field, and v is the kinematic viscosity,

(3.8)

which is set to be lé—o. We first consider an initial condition given by:
w(z,y,0) = —2sin(x)sin(y), =z €[0,2x], y € [0,27] (3.9)

with the exact solution w(x,y,t) = —2sin(x)sin(y) exp(—2tv). Similarly, 3rd-order spatial and
temporal order of accuracy of validated in Table 3.5 and Figure 3.14 respectively. For this problem,
we observe that large time-steps are allowed for the proposed scheme up to CFL = 40.

For a more complex scenario, we consider the incompressible Navier-Stokes equation (3.8) on

[0, 27]? with the following initial condition (the vortex patch problem)

(-1, T<a<im T<y<idm
(,9,0) {L Top<dn oy < (3.10)
10 otherwise
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Table 3.5: (Incompressible Navier-Stokes equations) L', L?, and L* errors and corresponding
orders of accuracy of the EL-RK-FV-WENO scheme for (3.8) with initial condition (3.9) at ¢t = 0.5
with CFL = 1.

mesh L' error order | L? error order | L™ error order
16x 16 | 3.90E-03 — | 4.65E-03 — 1.14E-02 —

32x 32 | 4.88E-04 3.00 | 5.82E-04 3.00 | 1.45E-03 2.98
64x 64 | 6.09E-05 3.00 | 7.27E-05 3.00 | 1.82E-04 2.99
128 128 | 7.61E-06 3.00 | 9.08E-06 3.00 | 2.29E-05 2.99
256x 256 | 9.51E-07 3.00 | 1.13E-06 3.00 | 2.86E-06  3.00

107 s ;
—<— EL-FV-WENO with mesh 256 x 256
Order=3
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Figure 3.14: (Incompressible Navier-Stokes equations) Log-log plot of CFL numbers versus L?
errors with fixed mesh 256 x 256 at t = 0.5 of the EL-RK-FV-WENO scheme.
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with zero boundary condition. We provide the mesh plot and contour plot of the numerical solution
of the proposed scheme at ¢ = 5 in Figure 3.15. The numerical result in Figure 3.15 is comparable

with the one in [35].
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(a) Mesh plot (b) Contour plot

Figure 3.15: (Vortex patch problem) Mesh plot and contour plot of the numerical solution of the
EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh 256 x 256 at t = 5.

Reflecting on this example, we note that the proposed EL-RK-FV-WENO scheme is able to
simulate a nonlinear convection-diffusion equation with all the designed good properties. This is
one of the major reasons why this EL-RK-FV-WENO scheme is attractive compared with our
previous SL-FV-WENO scheme [38].

4. Conclusion

In this paper, we introduce a high-order EL-RK-FV-WENO scheme for nonlinear convection-
diffusion equations. By defining a modified velocity field and corresponding flux-form semi-discretization,
the scheme relaxes the time-step constraint. To ensure mass conservation, high order accuracy in
both space and time, and high resolution for discontinuous solutions, while enabling explicitly large
time-stepping sizes, the spatial discretization is designed to align with the EL formulation and
surmount the challenges posed by the modified velocity field. It is well known that proposing a
robust and essentially non-oscillatory scheme for the transport of discontinuous solutions is far from
trivial. To address this challenge, we propose an improved WENO scheme. Compared with the
SL-FV scheme in [38], the proposed EL-RK-FV-WENO scheme is capable of simulating nonlinear

convection-diffusion equations while inheriting the ability to apply large time-steps. Extensive nu-
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merical tests, ranging from the linear convection-diffusion equation and the Navier-Stokes equations
to their zero-diffusive limit (nonlinear Euler equations), are conducted, verifying the effectiveness

of the proposed scheme.
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Appendix A. Third-order WENO-ZQ reconstruction method for Eulerian mesh

In this appendix, we introduce the 3rd-order WENO-ZQ reconstruction for the Eulerian mesh.

r—x;
€T b

For convenience, we assume Az; = Az and Ay; = Ay for all ¢, j. We define p;(z) =

vi(y) = y;zj and introduce a set of local orthogonal polynomials as {Pl(i’j )(x, y)} for a given cell
IZ'JZ
P =1, P = py(x), P = u(y),
g 1 g ¥ 1 .
P4(m) = p2(z) — = P5(m) = wi(2)v;(y), pém) = yf(y) SETE
We assume that s := @;; and I5 := I; j, while {us} and {I;} represent corresponding cell

averages and Eulerian cells based on the serial number in Figure A.16. The reconstruction procedure

is performed as follows:

alqul(i’j ) (z,y) using a special least-squares

Mo

Step 1 Construct a quadratic polynomial go(z,y) =

~

1
procedure. We define

1
V= {pey) € Pyl g i | (e w)dady =, s =2.4.5,6.8)

N[

Elp(r.y)) = { 3 <A;Ay /Isp(x,y)dq:dy—usy}

s=1,3,7,9
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Figure A.16: Stencil for the 3rd-order WENO-ZQ reconstruction.

Then, we determine that go(z,y) is the unique polynomial satisfying:

E(qo(z,y)) = min E(p(z,y)). (A.2)

3 o
Step 2 Construct eight linear polynomials {gx(z,y)}i_; = {3 a?’“Pl(Z’])(a:, y)} satisfying:
=1

1
=75 T =1,2,... A.
A(L’Ay //[5 Qk(wvy)dxdy Us or k 3 Ly 787 ( 3)
and
! (2, ) dady = T (A4)
AxAy//Isquay Tay = Us, .
where

s=1,2 for k=1; s=2,3 for k=2
s=3,6 for k=3; s=6,9 for k=4,
s=28,9 for k=5; s=7,8 for k=6;
s=4,7 for k=7, s=1,4 for k=28.

Step 3 Rewrite qo(z,y) as in [23, 24, 40]:
1 T i
qo(z,y) =0 <qo(x,y) -y == (w,y)> ) (=, y), (A.5)
o k= 4 k k=1
where {7 }5_, is a set of positive linear weights with their sum being 1. The linear weights
control the balance between optimal reconstruction accuracy and avoiding numerical oscilla-

tion. In our numerical tests, we set y9 = 0.6 and 73 = ... = v3 = 0.05 for such balance.

29



Step 4 Compute the smoothness indicators of {g(z,y)}5_o [20]:

o= 3 <A i pgn O >2d d
= z't 2 x, xdy,
* 7 AzAy ni //15 Y o0, (,9) Y

15<2

B S <A g O (2, y) 2d dy, for k
k= x! yqu%@/) xdy,for k=1,...
AzAy /[g 01, 0,

7
fo = (@)’ + (af)* + 5 (af*)’ + ¢ (a8)” + 5 (af)’,

Be = (a%)? + (a2)?® for k=1,2,....8.

Step 5 Compute the nonlinear weights {wy }5_, [7, 40]:

Wi
W = ) ’
DR
1=0
where
% 1+ r for k=0,1,...,8
= or k=0,1,...,
k= Tk Brte
with .
> 8o — Bkl
=t

8
9

When the exact solution is smooth over the entire large stencil |J I, we can prove

s=1

3 .
o = ka (1 +0 (A2)) , if Dul(g, ;) #0 and D2u|($i7yj) # 0,
i’yk (1 +0 (ACU)) ) if Du|(ri,yj) =0 and D2u‘($i,yj) #0,

by Taylor expansion.

Step 6 Construct the final reconstruction polynomial as follows:

1 A °
ulNO (@, y) = wo (qu@c, v) =3 (@, y>) D wean(@,y).

k=1 k=1

WENO(

Eventually, we define that u x,y) is the piecewise polynomial satisfying:

WENO

uWENO(m, y) = u; (z,y) (z,y) €l;; foralli,j.
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Remark Appendix A.l.u

WENO (g 4} offers a 3rd-order approximation to u(x,y,t), provided

{1;,j} is sufficiently accurate. Assuming Az ~ Ay, we can prove this as follows:

[1]

WENO
Uj g (x,y) —U(%yat)

8

1 Vi 8
= (70 +wo —70) <QO($7:U) - Z —qr(7,y) > Z Yk +wk — k) (2, Y)
70 =110 k=1

8 8
- (Z T+ Y (W — ’Yk)) u(z,y,t)
k=0 k=0

Q‘Q

1 8
= (wo —70) <70 (qo(z,y) — u(z,y,t) z::

8

+ QO(xay) - u(z:,y,t) + Z (wk - 'Yk) (Qk(SU,y) - U(ZE,y, t))
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