
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

Non-splitting Eulerian-Lagrangian WENO schemes for 

two-dimensional nonlinear convection-diffusion equations

Nanyi Zheng a, Xiaofeng Cai b,c, ,∗, Jing-Mei Qiu a, Jianxian Qiu d

a Department of Mathematical Sciences, University of Delaware, Newark, DE, 19716, USA
b Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
c Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, 
Zhuhai 519087, China
d School of Mathematical Sciences and Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing, 
Xiamen University, Xiamen, Fujian 361005, China

A R T I C L E I N F O A B S T R A C T 

Keywords:

Convection-diffusion

Eulerian-Lagrangian

Modfied characteristic lines

WENO reconstruction

Mass conservation

Varying Lagrangian meshes

In this paper, we develop high-order, conservative, non-splitting Eulerian-Lagrangian (EL) 
Runge-Kutta (RK) finite volume (FV) weighted essentially non-oscillatory (WENO) schemes for 
convection-diffusion equations. The proposed EL-RK-FV-WENO scheme dfines modfied charac

teristic lines and evolves the solution along them, significantly relaxing the time-step constraint 
for the convection term. The main algorithm design challenge arises from the complexity of con

structing accurate and robust reconstructions on dynamically varying Lagrangian meshes. This 
reconstruction process is needed for flux evaluations on time-dependent upstream quadrilaterals 
and time integrations along moving characteristics. To address this, we propose a strategy that 
utilizes a WENO reconstruction on a fixed Eulerian mesh for spatial reconstruction, and updates 
intermediate solutions on the Eulerian background mesh for implicit-explicit RK temporal in

tegration. This strategy leverages efficient reconstruction and remapping algorithms to manage 
the complexities of polynomial reconstructions on time-dependent quadrilaterals, while ensuring 
local mass conservation. The proposed scheme ensures mass conservation due to the flux-form 
semi-discretization and the mass-conservative reconstruction on both background and upstream 
cells. Extensive numerical tests have been performed to verify the effectiveness of the proposed 
scheme.

1. Introduction

Simulating convection-diffusion phenomena has a wide range of applications, including fluid dynamics [43,28,13], materials 
science [37,40,9], and geophysics [36,35]. In this paper, we consider a scalar convection-diffusion equation:

𝑢𝑡 +∇𝐱 ⋅ (𝐅(𝑢,𝐱, 𝑡)) = 𝜖Δ𝑢, (1.1)

where 𝜖 ≥ 0. Existing methods include the Eulerian [17,22] and Lagrangian approaches [15,5--7]. The Eulerian approach evolves the 
equation upon a fixed spatial mesh (or Eulerian mesh), and such methods are usually robust and relatively easy to implement, but 
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they suffer from time-step constraints. The Lagrangian approach follows characteristics in time evolution by generating a Lagrangian 
mesh that moves with the velocity field, allowing for a larger time-step size compared with Eulerian schemes. However, the moving 
Lagrangian mesh can be greatly distorted, leading to significant challenges in analysis and implementation. Between the two ap

proaches, there are the semi-Lagrangian (SL) approach [39,42,38,20], the Eulerian-Lagrangian (EL) approach [1,2,24,32,25,23,14] 
and the arbitrary Lagrangian-Eulerian (ALE) approach [10,31,45]. Both the SL and EL approaches utilize a fixed background mesh 
and accurately or approximately track information propagation along characteristics, which helps them ease the numerical time-step 
constraint, resulting in significant savings in CPU computation time [11]. The schemes from the ALE approach consider a dynamically 
moving mesh. These approaches aim to balance between the Eulerian and Lagrangian approaches in various ways, tailored for better 
efficiency of computational algorithms in different settings.

In this paper, we continue our development of the EL Runge-Kutta (RK) schemes [12,32], but now in a truly multi-dimensional 
finite volume (FV) fashion for nonlinear convection-diffusion problems. In the finite volume setting, we need to update only one 
degree of freedom per cell, as opposed to multiple ones, compared with the previous EL-RK discontinuous Galerkin (DG) scheme 
[12]. Building upon the EL-RK framework, we introduce a modfied velocity field as a first-order approximation of the analytic 
velocity field, offering triple benfits: firstly, the modfied velocity field has straight characteristic lines, leading to upstream cells 
with straight edges that are easier to be evaluated than polygons with curved edges; secondly, tracking characteristics approximately 
can allow a greatly relaxed time-stepping constraint compared with explicit Eulerian methods; thirdly, the EL framework offers 
flexibility in treating nonlinearity, while integrating diffusion terms, thereby presenting a truly multi-dimensional EL finite volume 
scheme compared to our earlier work in [20,32].

Although the introduction of the modfied velocity field offers many benfits, it also presents new challenges in reconstructing 
high-order polynomials on dynamically varying Lagrangian upstream cells. Performing robust and accurate weighted essentially 
non-oscillatory (WENO) reconstructions on time-dependent upstream polygons can be computationally complex and expensive. Fur

thermore, performing high-order time integration along moving characteristics brings new complications in algorithm design. Below, 
we elaborate major computational roadblocks and our proposed strategy in the following two aspects:

• Spatial reconstruction. The EL RK formulation necessitates flux evaluations at the interface of upstream cells; thus, we need to 
reconstruct piecewise polynomials on upstream quadrilaterals. Performing WENO reconstruction of polynomials on distorted 
upstream quadrilaterals, e.g., see the red mesh in Fig. 2.2b, can be computationally involved. Further, shapes of these upstream 
cells differ in every time-step, leading to expensive mesh-dependent local computations. To address such challenges, we propose 
to (a) perform a robust and efficient WENO reconstruction of piecewise polynomials on the background Eulerian mesh; and (b) 
leverage a remapping algorithm to compute cell averages on upstream cells from cell averages on the background Eulerian mesh 
in a mass conservative fashion [27,44]. Finally, we perform piecewise polynomial reconstruction on upstream quadrilaterals, 
with preservation of cell averages computed in (b), while utilizing the piecewise polynomials on Eulerian mesh reconstructed in 
(a) for accuracy consideration.

• Implicit-explicit (IMEX) RK temporal integration along linear approximation of characteristics. A major computational challenge in 
performing method-of-lines time integrations along moving meshes is the complexity again in polynomial reconstructions of 
solutions on quadrilateral meshes that are time varying. To address this issue, we propose to update intermediate IMEX solutions 
at the background Eulerian mesh as in [20,32], for which efficient reconstruction and the remapping algorithms can be utilized 
to facilitate the polynomial reconstruction on time-dependent quadrilaterals as mentioned above.

We emphasize that efficient polynomial reconstruction on a fixed Eulerian mesh serves as a cornerstone in our EL-RK algorithm, 
upon which polynomial reconstructions on distorted upstream quadrilaterals are performed. Indeed, WENO reconstructions on a 
background Eulerian mesh have been well developed in the literature [30,21,46,18,44]. In this paper, we further improve upon our 
previous work [44] and propose a new 2D WENO reconstruction. This new approach strikes a good balance between controlling 
numerical oscillations and achieving optimal accuracy, by optimizing small stencil polynomial approximations and the weighting 
strategy.

The rest of the paper is organized as follows. Section 2 presents the proposed EL-RK-FV-WENO schemes; Section 3 presents 
extensive numerical results showcasing the scheme’s effectiveness. Finally, we conclude in Section 4.

2. EL-RK-FV-WENO schemes

In Section 2.1, we introduce a first-order EL-RK-FV scheme for a linear convection-diffusion equation. Then, building upon the 
basic concepts introduced in Section 2.1, we discuss the construction of high-order EL-RK-FV-WENO schemes in Section 2.2. Finally, 
the extension of the proposed EL-RK-FV-WENO scheme to a nonlinear model is presented in Section 2.3.

2.1. First-order EL-RK-FV scheme

Consider

𝑢𝑡 + (𝑎(𝑥, 𝑦, 𝑡)𝑢)𝑥 + (𝑏(𝑥, 𝑦, 𝑡)𝑢)𝑦 = 𝜖(𝑢𝑥𝑥 + 𝑢𝑦𝑦). (2.1)

We assume a rectangle computational domain denoted by Ω ∶= [𝑥𝐿,𝑥𝑅] × [𝑦𝐵, 𝑦𝑇 ] with following partitions for each dimension
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Fig. 2.1. Schematic illustration for the dynamic region 𝐼𝑖,𝑗 (𝑡). 
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, ∀𝑖, 𝑗. We dfine the numerical solutions on the Eulerian mesh as {𝑢𝑛

𝑖,𝑗}, which approximate the averages of the 
𝑢(𝑥, 𝑦, 𝑡𝑛) over the Eulerian cells {𝐼𝑖,𝑗}, i.e. { 1 |𝐼𝑖,𝑗 | ∬𝐼𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡𝑛)𝑑𝑥𝑑𝑦}.

To derive an EL-RK-FV formulation, we first dfine a modfied velocity field (𝛼(𝑥, 𝑦, 𝑡), 𝛽(𝑥, 𝑦, 𝑡)). The definition of (𝛼(𝑥, 𝑦, 𝑡), 𝛽(𝑥, 𝑦, 𝑡))
is summarized as follows.

1. At 𝑡 = 𝑡𝑛+1, 𝛼(𝑥, 𝑦, 𝑡𝑛+1) and 𝛽(𝑥, 𝑦, 𝑡𝑛+1) belong to 𝑄1(𝐼𝑖,𝑗 ) satisfying
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(2.2)

2. We dfine a dynamic region (see Fig. 2.1)

𝐼𝑖,𝑗 (𝑡) ∶= {(𝑥, 𝑦)|(𝑥, 𝑦) = (𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)), 𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1))), (𝜉, 𝜂) ∈ 𝐼𝑖,𝑗}, (2.3)

where (𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)), 𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1))) represents the straight line going through (𝜉, 𝜂, 𝑡𝑛+1) satisfying{
𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)) = 𝜉 + (𝑡− 𝑡𝑛+1)𝛼(𝜉, 𝜂, 𝑡𝑛+1),
𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)) = 𝜂 + (𝑡− 𝑡𝑛+1)𝛽(𝜉, 𝜂, 𝑡𝑛+1).

(2.4)

We call (2.4) a modfied characteristic line.

3. For 𝑡∈ [𝑡𝑛, 𝑡𝑛+1) and (𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)), 𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1))) ∈ 𝐼𝑖,𝑗 (𝑡), {
𝛼(𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)), 𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1))) = 𝛼(𝜉, 𝜂, 𝑡𝑛+1),
𝛽(𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)), 𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1))) = 𝛽(𝜉, 𝜂, 𝑡𝑛+1).

(2.5)

With the definitions above, we can derive

𝑑

𝑑𝑡 ∬
𝐼𝑖,𝑗 (𝑡)

𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦

= ∬
𝐼𝑖,𝑗 (𝑡)

𝑢𝑡(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦+ ∫
𝜕𝐼𝑖,𝑗 (𝑡)

(𝛼, 𝛽)𝑢 ⋅ 𝐧𝑑𝑠

= ∬
𝐼𝑖,𝑗 (𝑡)

𝑢𝑡(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦+ ∬
𝐼𝑖,𝑗 (𝑡)

[
(𝑎𝑢)𝑥 + (𝑏𝑢)𝑦

]
𝑑𝑥𝑑𝑦

− ∫
𝜕𝐼𝑖,𝑗 (𝑡)

(𝑎, 𝑏)𝑢 ⋅ 𝐧𝑑𝑠+ ∫
𝜕𝐼𝑖,𝑗 (𝑡)

(𝛼, 𝛽)𝑢 ⋅ 𝐧𝑑𝑠

=− ∫
𝜕𝐼𝑖,𝑗 (𝑡)

(𝑎− 𝛼, 𝑏− 𝛽)𝑢 ⋅ 𝐧𝑑𝑠+ 𝜖 ∬
𝐼𝑖,𝑗 (𝑡)

Δ𝑢𝑑𝑥𝑑𝑦.

(2.6)

Journal of Computational Physics 529 (2025) 113890 

3 



N. Zheng, X. Cai, J.-M. Qiu et al. 

We dfine that 𝐅(𝑢, 𝑥, 𝑦, 𝑡) ∶= ((𝑎− 𝛼)𝑢, (𝑏− 𝛽)𝑢) and provide the concise EL-FV formulation:

𝑑

𝑑𝑡 ∬
𝐼𝑖,𝑗 (𝑡)

𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 = − ∫
𝜕𝐼𝑖,𝑗 (𝑡)

𝐅(𝑢, 𝑥, 𝑦, 𝑡) ⋅ 𝐧𝑑𝑠+ 𝜖 ∬
𝐼𝑖,𝑗 (𝑡)

Δ𝑢𝑑𝑥𝑑𝑦

∶= 𝑖,𝑗 (𝑢; 𝑡) + 𝑖,𝑗 (𝑢; 𝑡).

(2.7)

To evaluate the right-hand side (RHS) of (2.7), we introduce the following notation for semi-discretization:

𝑑𝑢̃𝑖,𝑗 (𝑡)
𝑑𝑡 

= ̃𝑖,𝑗 (𝐔; 𝑡) + ̃𝑖,𝑗 (𝐔; 𝑡),  𝑖 = 1,… ,𝑁𝑥,  𝑗 = 1,… ,𝑁𝑦, (2.8)

where

• the notation ̃⋅ specfies that the integral value corresponds to the characteristic spatial region 𝐼𝑖,𝑗 (𝑡),
• 𝑢̃𝑖,𝑗 (𝑡) approximates ∬

𝐼𝑖,𝑗 (𝑡)
𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦,

• ̃𝑖,𝑗 (𝐔; 𝑡) approximates 𝑖,𝑗 (𝑢; 𝑡),
• ̃𝑖,𝑗 (𝐔; 𝑡) approximates 𝑖,𝑗 (𝑢; 𝑡),
• 𝐔 ∶=

(
𝑢𝑖,𝑗 (𝑡)

)
𝑁𝑥𝑁𝑦

represents the finite volumes such that

𝑢𝑖,𝑗 (𝑡) ≈
1 |𝐼𝑖,𝑗 | ∬

𝐼𝑖,𝑗

𝑢(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦. (2.9)

Similar to 𝐔, we can also represent (2.8) globally as follows:

𝑑𝐔̃(𝑡)
𝑑𝑡 

= ̃ (𝐔; 𝑡) + ̃(𝐔; 𝑡), (2.10)

where ̃ ∶=
(̃𝑖,𝑗

)
𝑁𝑥𝑁𝑦

and ̃ ∶=
(̃𝑖,𝑗

)
𝑁𝑥𝑁𝑦

. Coupling (2.10) with the first-order forward-backward Euler IMEX method in [3] 

yields the first-order EL-RK-FV scheme:

𝐌𝐔
𝑛+1

= 𝐔̃𝑛 +Δ𝑡̃ (𝐔
𝑛
, 𝑡𝑛) + Δ𝑡

(
𝜖𝐌𝐃𝐔

𝑛+1)
, (2.11)

where

• 𝐌 is a diagonal matrix such that 𝐌𝐔
𝑛+1

=
(|𝐼𝑖,𝑗 |𝑢𝑛+1

𝑖,𝑗

)
𝑁𝑥𝑁𝑦

,

• 𝐔̃𝑛 approximates 
(∬

𝐼𝑖,𝑗 (𝑡𝑛)
𝑢(𝑥, 𝑦, 𝑡𝑛)𝑑𝑥𝑑𝑦

)
𝑁𝑥𝑁𝑦

,

• 𝐃 is a differential matrix such that

𝐃𝐔
𝑛+1

≈
⎛⎜⎜⎜⎝

1 |𝐼𝑖,𝑗 | ∬
𝐼𝑖,𝑗

Δ𝑢𝑑𝑥𝑑𝑦

⎞⎟⎟⎟⎠𝑁𝑥𝑁𝑦

.

As shown, the diffusion term in (2.11) is implicit. Consequently, 𝐔
𝑛+1

is obtained by solving the following linear system:

𝐌 (𝐈−Δ𝑡𝜖𝐃)𝐔
𝑛+1

= 𝐔̃𝑛 +Δ𝑡̃ (𝐔
𝑛
, 𝑡𝑛). (2.12)

In (2.11), the methods for approximating the ̃ and ̃ terms with first-order accuracy are not discussed. High-order spatial 
approximations for these terms will be introduced in the next section. The first-order approximations can be viewed as simplfied 
versions of their high-order counterparts.

Remark 2.1. (Empirical time-step constraint of the convection term for stability) Similar to the flux-form finite volume method in 
[34], where 𝛼 = 𝛽 = 0, we require that

Δ𝑡 ≤ 1 
max |𝑎−𝛼|

Δ𝑥 + max |𝑏−𝛽|
Δ𝑦 

= Δ𝑥Δ𝑦 
Δ𝑦max |𝑎− 𝛼|+Δ𝑥max |𝑏− 𝛽| (2.13)

with Δ𝑥 ∶= max 
1≤𝑖≤𝑁𝑥

{Δ𝑥𝑖} and Δ𝑦 ∶= max 
1≤𝑗≤𝑁𝑦

{Δ𝑦𝑗}. Furthermore, we stipulate that 𝐼𝑖,𝑗 (𝑡𝑛) remains a convex quadrilateral. Otherwise, 

𝐼𝑖,𝑗 (𝑡𝑛) might become ill-posed in various situations. Therefore, it suffices to require that any three vertices of 𝐼𝑖,𝑗 (𝑡𝑛) cannot be 
collinear. In other words,
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∬
△𝑙(𝐼𝑖,𝑗 (𝑡))

𝑑𝑥𝑑𝑦 > 0, 𝑙 ∈ {𝐿𝑇 ,𝑅𝑇 ,𝐿𝐵,𝑅𝐵}, (2.14)

where

△𝐿𝑇 (𝐼𝑖,𝑗 (𝑡)) ∶= {(𝑥, 𝑦)|(𝑥, 𝑦) = (𝑥(𝑡; (𝜉, 𝜂, 𝑡𝑛+1)), 𝑦(𝑡; (𝜉, 𝜂, 𝑡𝑛+1))), (2.15)

𝑦
𝑗− 1

2
+ (𝜉 − 𝑥

𝑖− 1
2
)Δ𝑦𝑗∕Δ𝑥𝑖 ≤ 𝜂 ≤ 𝑦

𝑗+ 1
2
, 𝜉 ∈ [𝑥

𝑖− 1
2
, 𝑥

𝑖+ 1
2
]}. (2.16)

Similar definitions hold for the other {△𝑙(𝐼𝑖,𝑗 (𝑡))}. Through tedious derivation and omitting some higher-order terms, we can establish 
that (2.14) implies

Δ𝑡 <
1 |𝑎𝑥(𝑥𝑖, 𝑦𝑗 , 𝑡

𝑛+1)|+ |𝑏𝑦(𝑥𝑖, 𝑦𝑗 , 𝑡
𝑛+1)| , (2.17)

where 𝑎𝑥(𝑥𝑖, 𝑦𝑗 , 𝑡
𝑛+1) = 𝜕𝑎 

𝜕𝑥
|(𝑥𝑖,𝑦𝑗 ,𝑡

𝑛+1) and 𝑏𝑦(𝑥𝑖, 𝑦𝑗 , 𝑡
𝑛+1) = 𝜕𝑏 

𝜕𝑦
|(𝑥𝑖,𝑦𝑗 ,𝑡

𝑛+1). Here, we assume that the velocity field is smooth enough for 
us to take partial derivatives and drop the higher-order terms. By combining (2.13) with (2.17), and considering that |𝑎−𝛼|, |𝑏− 𝛽| =
𝑂(Δ𝑡) +𝑂(Δ𝑥2) +𝑂(Δ𝑦2), we arrive at an approximate time-step constraint:

Δ𝑡 ∼
√
min{Δ𝑥,Δ𝑦}. (2.18)

2.2. High-order EL-RK-FV-WENO schemes

In this section, we introduce the high-order EL-RK-FV-WENO schemes by first focusing on constructing the high-order approx

imations of the convection and the diffusion terms of the semi-discretization (2.8) in Section 2.2.1 and Section 2.2.2 respectively. 
Finally, the coupling of the semi-discretization with high-order IMEX RK methods is discussed in Section 2.2.3.

2.2.1. Flux approximation

As analyzed in Remark 2.1, the design of the flux function at the boundaries of dynamically changing, nonuniform Lagrangian cells 
significantly relaxes the time-step constraint. However, compared to the flux function of the Eulerian approach, located at {𝜕𝐼𝑖,𝑗}, 
this brings significant challenges in terms of designing an efficient spatial discretization for such a framework. To address this, our 
strategy contains three basic steps. First, we conduct an efficient WENO-type reconstruction on the fixed Eulerian mesh. Second, an 
efficient remapping procedure is designed to map the piecewise WENO reconstruction polynomial with respect to the Eulerian mesh 
{𝐼𝑖,𝑗} to another piecewise polynomial with respect to the Lagrangian mesh {𝐼𝑖,𝑗 (𝑡)}. Finally, we use the new piecewise polynomial 
to provide upwind point values at the boundaries of {𝜕𝐼𝑖,𝑗 (𝑡)} and approximate the flux function. The details of these three steps are 
concluded as follows:

Step 1: Construct a piecewise polynomial with respect to the Eulerian mesh, {𝐼𝑖,𝑗}.

We construct a piecewise reconstruction polynomial 𝑢WENO(𝑥, 𝑦) such that

• 𝑢WENO(𝑥, 𝑦)|𝐼𝑖,𝑗
= 𝑢WENO

𝑖,𝑗
(𝑥, 𝑦) with 𝑢WENO

𝑖,𝑗
∈ 𝑃 2(𝐼𝑖,𝑗 ) for all 𝑖, 𝑗,

• each 𝑢WENO
𝑖,𝑗

is constructed based on the information 𝑢𝑖,𝑗 (𝑡) along with its eight neighbor finite volumes,

• ∬
𝐼𝑖,𝑗

𝑢WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =Δ𝑥𝑖Δ𝑦𝑗𝑢𝑖,𝑗 (𝑡) for all 𝑖, 𝑗,

• 𝑢WENO(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 𝑡) +𝑂(Δ𝑥3) +𝑂(Δ𝑦3), (𝑥, 𝑦) ∈ Ω.

Here, we summarize the details of constructing 𝑢WENO(𝑥, 𝑦) in Appendix A for conciseness. A schematic is offered in Fig. 2.2a 
to demonstrate the discontinuity of 𝑢WENO(𝑥, 𝑦). We use various colors to shade different Eulerian cells, indicating that 
𝑢WENO(𝑥, 𝑦) has distinct polynomial expressions in each cell. In the schematic, the tildes over 𝑖 and 𝑗 are used on purpose, 
which will be used in the following steps. We would like to emphasize that the WENO-ZQ reconstruction method introduced 
in Appendix A is a more advanced version than the one we previously designed, as detailed in [44]. In particular, in the 
numerical section, we observe that the solution of the WENO reconstruction in [44] introduces a small numerical wiggle. 
We redesigned the small stencils and part of the weighting strategy. The newly designed WENO-ZQ method presented in this 
paper significantly enhances the control of numerical oscillation, addressing the suboptimal performance of the previously 
designed method in managing nonphysical oscillations. 

Step 2: Construct a piecewise polynomial on the Lagrangian mesh {𝐼𝑖,𝑗(𝑡)} (Remapping).

Step 1 is an efficient reconstruction method and is inevitable, as will be shown in Section 2.2.3. The basic idea of this 
remapping step is that we want to conduct an efficient modfication to 𝑢WENO(𝑥, 𝑦) instead of involving a new reconstruction 
on the Lagrangian mesh. The resulting new piecewise polynomial, denoted by ̃𝑢WENO(𝑥, 𝑦), satifies the following conditions:

• 𝑢̃WENO(𝑥, 𝑦)|
𝐼𝑖,𝑗 (𝑡)

= 𝑢̃WENO
𝑖,𝑗

(𝑥, 𝑦) with 𝑢̃WENO
𝑖,𝑗

∈ 𝑃 2(𝐼𝑖,𝑗 (𝑡)) for all 𝑖, 𝑗,

• ∬
𝐼𝑖,𝑗 (𝑡)

𝑢̃WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =∬
𝐼𝑖,𝑗 (𝑡)

𝑢WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦 for all 𝑖, 𝑗,

• 𝑢̃WENO(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 𝑡) +𝑂(Δ𝑥3) +𝑂(Δ𝑦3), (𝑥, 𝑦) ∈ Ω.
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Fig. 2.2. Schematic illustrations of 𝑢WENO(𝑥, 𝑦) and ̃𝑢WENO
𝑖,𝑗

(𝑥, 𝑦). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Here, the first condition refers to the capacity of ̃𝑢WENO(𝑥, 𝑦) to provide upwind point value information for the flux approxi

mation, the second condition is related to the mass conservation property, and the third one is an accuracy requirement. We 
summarize the procedure for constructing 𝑢̃WENO(𝑥, 𝑦) in a given Lagrangian cell, 𝐼𝑖,𝑗 (𝑡), as follows (see Fig. 2.2b):

Step 2.1: Compute the exact ``mass'' of 𝑢WENO(𝑥, 𝑦) over 𝐼𝑖,𝑗 (𝑡), i.e.

𝑢̃𝑖,𝑗 ∶= ∬
𝐼𝑖,𝑗 (𝑡)

𝑢WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦. (2.19)

The integrand in Equation (2.19) is discontinuous over 𝐼𝑖,𝑗 (𝑡). A numerical integral for Equation (2.19) contains 
two basic steps. First, a clipping procedure is conducted to divide 𝐼𝑖,𝑗 (𝑡) into smaller polygons such that 𝑢WENO(𝑥, 𝑦)
is continuous in each of them. Second, a numerical integration is conducted in each polygon, and the results are 
summed to obtain the final integral. Following these two basic steps, there are different implementation methods 
[16,27,44]. For a detailed implementation, we refer to our previous work [44].

Step 2.2: Find all Eulerian cells that intersect with 𝐼𝑖,𝑗 (𝑡). We dfine that  ∶= {(𝑝, 𝑞)|𝐼𝑝,𝑞 ∩ 𝐼𝑖,𝑗 (𝑡) ≠ ∅}. For instance, in 
Fig. 2.2b,  = {(𝑖− 1, 𝑗 + 1), (𝑖, 𝑗 + 1), (𝑖− 1, 𝑗), (𝑖, 𝑗), (𝑖, 𝑗 − 1)}. Here, the tildes over 𝑖 and 𝑗 are used to distinguish 
the cell indices in  from (𝑖, 𝑗), as the upstream cell 𝐼𝑖,𝑗 (𝑡) may be distant from the Eulerian cell 𝐼𝑖,𝑗 when large 
time step sizes are used.

Step 2.3: Compute the integrals of the candidate 𝑃 2 polynomials over 𝐼𝑖,𝑗 (𝑡), i.e.

𝑢̃
𝑝,𝑞
𝑖,𝑗

∶= ∬
𝐼𝑖,𝑗 (𝑡)

𝑢WENO
𝑝,𝑞 (𝑥, 𝑦)𝑑𝑥𝑑𝑦, (𝑝, 𝑞) ∈. (2.20)

Step 2.4: Choose the index (𝑝̃, 𝑞) such that |𝑢̃𝑝,𝑞
𝑖,𝑗

− 𝑢̃𝑖,𝑗 | reaches the minimum, i.e.

|𝑢̃𝑝̃,𝑞
𝑖,𝑗

− 𝑢̃𝑖,𝑗 | = min 
(𝑝,𝑞)∈{|𝑢̃𝑝,𝑞

𝑖,𝑗
− 𝑢̃𝑖,𝑗 |}. (2.21)

Step 2.5: Dfine a 𝑃 2 polynomial, denoted by 𝑢̃WENO
𝑖,𝑗

(𝑥, 𝑦), on 𝐼𝑖,𝑗 (𝑡) such that

𝑢̃WENO
𝑖,𝑗 (𝑥, 𝑦) ∶= 𝑢WENO

(𝑝̃,𝑞) (𝑥, 𝑦)|
𝐼𝑖,𝑗 (𝑡)

− 1 |𝐼𝑖,𝑗 (𝑡)| 𝑢̃(𝑝̃,𝑞)𝑖,𝑗
+ 1 |𝐼𝑖,𝑗 (𝑡)| 𝑢̃𝑖,𝑗 , (2.22)

where ⋅|
𝐼𝑖,𝑗 (𝑡)

means that we redfine the domain of definition to be 𝐼𝑖,𝑗 (𝑡) for a given function. As an example, 
consider the case demonstrated in Fig. 2.2b where (𝑝̃, 𝑞) = (𝑖, 𝑗). In this case, we simply change the domain of 
definition for 𝑢WENO

𝑖,𝑗
(𝑥, 𝑦) and adjust it according to (2.22).

Step 3: Construct the final flux approximation.

The final flux approximation is given by the following conservative formulation

̃𝑖,𝑗 (𝐔; 𝑡) ∶= − ∫
𝜕𝐼𝑖,𝑗 (𝑡)

𝐹
(
𝑢̃WENO, 𝑥, 𝑦, 𝑡

)
𝑑𝑠, (2.23)

where

𝐹
(
𝑢̃WENO, 𝑥, 𝑦, 𝑡

)
∶= 𝑊 (𝑥, 𝑦, 𝑡)𝑢̃up

𝑖,𝑗
(𝑥, 𝑦) (2.24)

with
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𝑊 (𝑥, 𝑦, 𝑡) ∶= (𝑎− 𝛼, 𝑏− 𝛽) ⋅ 𝐧 (2.25)

and

𝑢̃
up

𝑖,𝑗
(𝑥, 𝑦) ∶=

{
𝑢̃WENO
𝑖,𝑗

(𝑥, 𝑦), 𝑊 > 0,
𝑢̃

WENO,ext
𝑖,𝑗

(𝑥, 𝑦), 𝑊 ≤ 0.
(2.26)

Here, 𝑢̃WENO,ext
𝑖,𝑗

(𝑥, 𝑦) are the exterior solution with respect to corresponding edge of 𝐼𝑖,𝑗 (𝑡).

At the end of this section, we prove two basic properties of 𝑢̃WENO(𝑥, 𝑦).

Proposition 2.2. (Mass conservation for the remapping method) Local integrals of 𝑢̃WENO over {𝐼𝑖,𝑗 (𝑡)} are consistent with the integrals of 
𝑢WENO.

Proof.

∬
𝐼𝑖,𝑗 (𝑡)

𝑢̃WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦

= ∬
𝐼𝑖,𝑗 (𝑡)

(
𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)|

𝐼𝑖,𝑗 (𝑡)
− 1 |𝐼𝑖,𝑗 (𝑡)| 𝑢̃(𝑝̃,𝑞)𝑖,𝑗

+ 1 |𝐼𝑖,𝑗 (𝑡)| 𝑢̃𝑖,𝑗

)
𝑑𝑥𝑑𝑦

= 𝑢̃
(𝑝̃,𝑞)
𝑖,𝑗

− 𝑢̃
(𝑝̃,𝑞)
𝑖,𝑗

+ 𝑢̃𝑖,𝑗

= ∬
𝐼𝑖,𝑗 (𝑡)

𝑢WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦. □

(2.27)

Proposition 2.3. (Accuracy of the remapping method) Assuming 𝑢(𝑥, 𝑦, 𝑡) is sufficiently smooth and Δ𝑥∼Δ𝑦, we have the following estimate 
for 𝑢̃WENO:

𝑢̃WENO(𝑥, 𝑦) = 𝑢(𝑥, 𝑦, 𝑡) +𝑂(Δ𝑥3). (2.28)

Proof. For (𝑥, 𝑦) ∈ 𝐼𝑖,𝑗 (𝑡),

𝑢̃WENO(𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡)

=

(
𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)|

𝐼𝑖,𝑗 (𝑡)
− 1 |𝐼𝑖,𝑗 (𝑡)| 𝑢̃(𝑝̃,𝑞)𝑖,𝑗

+ 1 |𝐼𝑖,𝑗 (𝑡)| 𝑢̃𝑖,𝑗

)
− 𝑢(𝑥, 𝑦, 𝑡)

=
(
𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)|

𝐼𝑖,𝑗 (𝑡)
− 𝑢(𝑥, 𝑦, 𝑡)

)
− 1 |𝐼𝑖,𝑗 (𝑡)|

(
𝑢̃
(𝑝̃,𝑞)
𝑖,𝑗

− 𝑢̃𝑖,𝑗

) (2.29)

For 𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)|

𝐼𝑖,𝑗 (𝑡)
− 𝑢(𝑥, 𝑦, 𝑡), we have

𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)|

𝐼𝑖,𝑗 (𝑡)
− 𝑢(𝑥, 𝑦, 𝑡)

=
2 ∑

𝑘=0

[(
𝑥− 𝑥𝑝̃

) 𝜕

𝜕𝑥
+
(
𝑦− 𝑦𝑞

) 𝜕

𝜕𝑦

]𝑘 (
𝑢WENO
(𝑝̃,𝑞) (⋅, ⋅) − 𝑢(⋅, ⋅, 𝑡)

) |(𝑥𝑝̃,𝑦𝑞 ) +𝑂(Δ𝑥3).

Following the same procedure in Remark A.1, we can easily prove that

‖𝐷𝛼
(
𝑢WENO
(𝑝̃,𝑞) (⋅, ⋅) − 𝑢(⋅, ⋅, 𝑡)

)‖∞ = 𝑂(Δ𝑥3−𝛼) (2.30)

Combining (2.30) with the fact that 𝑥− 𝑥𝑝̃ = 𝑂(Δ𝑡), 𝑦− 𝑦𝑞 = 𝑂(Δ𝑡), and Δ𝑡∼Δ𝑥 ∼Δ𝑦, we have

𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)|

𝐼𝑖,𝑗 (𝑡)
− 𝑢(𝑥, 𝑦, 𝑡) = 𝑂(Δ𝑥3). (2.31)

For 1 |𝐼𝑖,𝑗 (𝑡)|
(
𝑢̃
(𝑝̃,𝑞)
𝑖,𝑗

− 𝑢̃𝑖,𝑗

)
,
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1 |𝐼𝑖,𝑗 (𝑡)|
(
𝑢̃
(𝑝̃,𝑞)
𝑖,𝑗

− 𝑢̃𝑖,𝑗

)

= 1 |𝐼𝑖,𝑗 (𝑡)|
⎛⎜⎜⎜⎝∬𝐼𝑖,𝑗 (𝑡)

𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦)𝑑𝑥𝑑𝑦− ∬

𝐼𝑖,𝑗 (𝑡)

𝑢WENO(𝑥, 𝑦)𝑑𝑥𝑑𝑦

⎞⎟⎟⎟⎠
= 1 |𝐼𝑖,𝑗 (𝑡)|

⎛⎜⎜⎜⎝∬𝐼𝑖,𝑗 (𝑡)

(
𝑢WENO
(𝑝̃,𝑞) (𝑥, 𝑦) − 𝑢WENO(𝑥, 𝑦)

)
𝑑𝑥𝑑𝑦

⎞⎟⎟⎟⎠

(2.32)

Since (2.31) is true for all (𝑥, 𝑦) ∈ 𝐼𝑖,𝑗 (𝑡) and

𝑢WENO(𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡) = 𝑂(Δ𝑥3) for all (𝑥, 𝑦) ∈ Ω (2.33)

from Remark A.1, we immediately have

1 |𝐼𝑖,𝑗 (𝑡)|
(
𝑢̃
(𝑝̃,𝑞)
𝑖,𝑗

− 𝑢̃𝑖,𝑗

)
= 𝑂(Δ𝑥3). □ (2.34)

2.2.2. Approximation of the diffusion term
The strategy of constructing ̃𝑖,𝑗 (𝐔; 𝑡) contains three steps. First, based on the finite volume information of 𝑢, we recover high-order 

finite volume information of Δ𝑢 (assuming uniform mesh) by introducing a differential matrix. Second, we reconstruct a high-order 
piecewise polynomial to approximate Δ𝑢. Finally, we evaluate the corresponding integral over 𝐼𝑖,𝑗 (𝑡) and obtain ̃𝑖,𝑗 (𝐔; 𝑡). We empha

size here that the implicit treatment of the diffusion term is performed on the Eulerian mesh. This means that the differential matrix 
introduced in the following Step 1 is necessary, as will be shown in Section 2.2.3. The details of these three steps are summarized as 
follows:

Step 1: Recover high-order finite volume information of Δ𝑢.

We recover

Δ𝐔 ∶=𝐃𝐔, (2.35)

where 𝐃 is the differential matrix assembled by the following local operators

Δ𝑢𝑖,𝑗 ∶=
[
− 1 
12

4
3

− 5
2

4
3

− 1 
12

] ⎛⎜⎜⎜⎜⎜⎝
1 

Δ𝑥2

⎡⎢⎢⎢⎢⎢⎣

𝑢𝑖−2,𝑗
𝑢𝑖−1,𝑗
𝑢𝑖,𝑗

𝑢𝑖+1,𝑗
𝑢𝑖+2,𝑗

⎤⎥⎥⎥⎥⎥⎦
+ 1 

Δ𝑦2

⎡⎢⎢⎢⎢⎢⎣

𝑢𝑖,𝑗−2
𝑢𝑖,𝑗−1
𝑢𝑖,𝑗

𝑢𝑖,𝑗+1
𝑢𝑖,𝑗+2

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
,

for all 𝑖, 𝑗, and corresponding boundary conditions.

Step 2: Recover a piecewise reconstruction polynomial of Δ𝑢.

We utilize the same polynomial 𝑞0(𝑥, 𝑦) in Appendix A as the reconstruction formula and denote the final piecewise polyno

mial by Δ𝑢rec(𝑥, 𝑦).
Step 3: Compute the integral of Δ𝑢rec(𝑥, 𝑦) as the final approximation.

̃𝑖,𝑗 (𝐔; 𝑡)

=𝜖 ∬
𝐼𝑖,𝑗 (𝑡)

Δ𝑢𝑑𝑥𝑑𝑦 ≈ 𝜖 ∬
𝐼𝑖,𝑗 (𝑡)

Δ𝑢rec(𝑥, 𝑦)𝑑𝑥𝑑𝑦 ∶= 𝜖Δ̃𝑢𝑖,𝑗

(
𝐔; 𝑡
)

for all 𝑖, 𝑗, (2.36)

where the integral of piecewise polynomial is accomplished by the method of our previous work [44].

2.2.3. High-order IMEX RK temporal discretization

In light of the high-order spatial discretization presented in (2.8), (2.23), and (2.36), we introduce the IMEX RK temporal dis

cretizations. Under the IMEX setting, we evolve the convection flux term explicitly while evolving the diffusion term implicitly. In 
addition, the time-step constraint is controlled by the explicit convection part, with Δ𝑡 ∼

√
min{Δ𝑥,Δ𝑦}.
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Fig. 2.3. Schematic illustration of full discretization with IMEX(1,2,2). 

An IMEX RK scheme can be represented by the following two butcher tables [3]:

Implicit Scheme Explicit Scheme

0 0 0 0 ⋯ 0
𝑐1 0 𝑎11 0 ⋯ 0
𝑐2 0 𝑎21 𝑎22 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝑠 0 𝑎𝑠1 𝑎𝑠2 ⋯ 𝑎𝑠𝑠

0 𝑏1 𝑏2 ⋯ 𝑏𝑠

0 0 0 0 ⋯ 0
𝑐1 𝑎̂21 0 0 ⋯ 0
𝑐2 𝑎̂31 𝑎̂32 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑐𝜎−1 𝑎̂𝜎,1 𝑎̂𝜎,2 𝑎̂𝜎,3 ⋯ 0
𝑏̂1 𝑏̂2 𝑏̂3 ⋯ 𝑏̂𝜎

A triplet (𝑠, 𝜎, 𝑝) is used to demonstrate that the IMEX scheme uses an s-stage implicit scheme and a 𝜎-stage explicit scheme achieving 
𝑝th-order accuracy.

The butcher table of first-order IMEX scheme in (2.11), which is also called IMEX(1,1,1) in [3], is

Implicit Scheme Explicit Scheme

0 0 0
1 0 1

0 1

0 0 0
1 1 0

1 0

The second-order IMEX(1,2,2) scheme in [3] is represented by the following butcher tables:

Implicit Scheme Explicit Scheme

0 0 0
1
2 0 1

2
0 1

0 0 0
1
2

1
2 0
0 1

One noteworthy complexity of IMEX(1,2,2), in contrast to IMEX(1,1,1), is its involvement of the intermediate time level 𝑡𝑛+
1
2

(see Fig. 2.3a). To construct a full discretization based on IMEX(1,2,2), we dfine a new characteristic region ̃̃Ω𝑖,𝑗 ∶= {(𝑥, 𝑦, 𝑡)|(𝑥, 𝑦) ∈

𝐼𝑖,𝑗 (𝑡+
1
2Δ𝑡), 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+

1
2 ]} for each mesh index (𝑖, 𝑗) (see Fig. 2.3b), following a similar strategy as proposed in [32]. For { ̃̃Ω𝑖,𝑗}, we 

dfine an operator ̃̃ such that ̃̃(𝐔, 𝑡𝑛+𝛼) represents the corresponding WENO piecewise polynomial with respect to {𝐼𝑖,𝑗 (𝑡
𝑛+ 1

2 +𝛼)}, 

which is constructed based on 𝐔. Furthermore, we dfine that ̃̃ (𝐔, 𝑡𝑛+𝛼) ∶=
(

̃̃ 𝑖,𝑗 (𝐔, 𝑡𝑛+𝛼)
)

𝑁𝑥𝑁𝑦

with 

̃̃ 𝑖,𝑗 (𝐔, 𝑡𝑛+𝛼) ∶= − ∫
𝜕𝐼𝑖,𝑗 (𝑡

𝑛+ 1
2 +𝛼 )

𝐹 (̃̃𝑊 (𝐔, 𝑡𝑛+𝛼), 𝑥, 𝑦, 𝑡𝑛+𝛼)𝑑𝑠, for all 𝑖, 𝑗. (2.37)

Then, the second-order fully discrete scheme is provided as follows (see Fig. 2.3):

𝐌𝐔
(1)

= ̃̃𝐔
𝑛

+ 1
2
Δ𝑡

̃̃
 (𝐔

𝑛
, 𝑡𝑛) + 1

2
Δ𝑡
(
𝜖𝐌𝐃𝐔

(1))
, (2.38)
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𝐌𝐔
𝑛+1

= 𝐔̃𝑛 +Δ𝑡̃ (𝐔
(1)

, 𝑡𝑛+
1
2 ) + Δ𝑡̃(𝐔

(1)
, 𝑡𝑛+

1
2 ), (2.39)

where

• the notation ̃̃⋅ is used to indicate that the corresponding values or operations refer to specific slices of the characteristic region 
̃̃Ω𝑖,𝑗 ,

•
̃̃𝐔

𝑛

=∶
(
∬

𝐼𝑖,𝑗 (𝑡
𝑛+ 1

2 )
 (

𝐔
𝑛
)

𝑑𝑥𝑑𝑦

)
𝑁𝑥𝑁𝑦

(see Fig. 2.3b).

The design of the additional characteristic region ̃̃Ω𝑖,𝑗 helps us avoid the expansive reconstruction procedure associated with 
nonuniform Lagrangian meshes at the intermediate time level, which dynamically change as time evolves. For the numerical tests, 
we employ IMEX(2,3,3) as described in [3] to construct a third-order fully discretized EL-RK-FV-WENO-IMEX scheme. We omit the 
details for IMEX(2,3,3) since the key techniques have already been covered in the IMEX(1,2,2) case.

2.3. EL-RK-FV-WENO scheme for the nonlinear convection-diffusion equation

Consider

𝑢𝑡 + (𝑓1(𝑢))𝑥 + (𝑓2(𝑢))𝑦 = 𝜖(𝑢𝑥𝑥 + 𝑢𝑦𝑦). (2.40)

To extend the proposed scheme for (2.40), we further design two modfications with very limited extra cost. The two modfications 
utilize the EL-RK-FV framework designed in the previous sections and no longer require the adoption of one temporal method within 
another as in [12]. We summarize the details of these two modfications as follows:

1. Redesign the modfied velocity field.

The construction of the original modfied velocity field requires the exact velocity field at 𝑡 = 𝑡𝑛+1, which is unknown for nonlinear 
models. We redesign that (𝛼(𝑥, 𝑦, 𝑡), 𝛽(𝑥, 𝑦, 𝑡)) is dfined by first applying interpolation at 𝑡 = 𝑡𝑛+1 such that

𝛼(𝑥
𝑖± 1

2
, 𝑦

𝑗± 1
2
, 𝑡𝑛+1) = 𝑓 ′

1((𝐔
𝑛
))|(𝑥

𝑖± 1
2

,𝑦
𝑗± 1

2
),

𝛽(𝑥
𝑖± 1

2
, 𝑦

𝑗± 1
2
, 𝑡𝑛+1) = 𝑓 ′

2((𝐔
𝑛
))|(𝑥

𝑖± 1
2

,𝑦
𝑗± 1

2
),

(2.41)

and then following the same procedure as in (2.3)-(2.5). This modfied velocity field can still give us the same time-step constraint 
Δ𝑡 ∼

√
min{Δ𝑥,Δ𝑦} if we apply similar analysis as in Remark 2.1. This flexibility of defining the modfied velocity field is of 

vital importance. In our previous semi-Lagrangian work for convection-diffusion equations [20], the necessity of an exact velocity 
field presents challenges in adapting the approach for nonlinear models.

2. Recover the velocity fields at intermediate time levels.

The velocity field for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1], which is required for evaluating numerical fluxes, is unknown for nonlinear models. For this 
issue, we simply use the predicted solutions at the intermediate time levels to recover corresponding velocity fields. For example, 
in (2.39), the exact velocity field (𝑎(𝑥, 𝑦, 𝑡𝑛+

1
2 ), 𝑏(𝑥, 𝑦, 𝑡𝑛+

1
2 )) is replaced with 

(
𝑓 ′
1((𝐔

(1)
)), 𝑓 ′

2((𝐔
(1)
))
)

for ̃
(
𝐔
(1)

, 𝑡𝑛+
1
2
)

.

3. Numerical tests

In this section, we apply the proposed EL-RK-FV-WENO scheme to four challenging problems. The first two problems involve 
linear equations: the swirling deformation flow, characterized by pure convection terms, and the 0D2V Leonard-Bernstein linearized 
Fokker-Planck equation. The latter two are nonlinear models: the Kelvin-Helmholtz instability problem, again with pure convection 
terms, and the incompressible Navier-Stokes equations. We use these four cases to demonstrate the effectiveness and the designed 
properties of the proposed scheme. The time-steps in the following are dfined by:

Δ𝑡 = CFL
max{|𝑓 ′(𝑢)|}

Δ𝑥 + max{|𝑔′(𝑢)|}
Δ𝑦 

, (3.1)

where 
(
𝑓 ′(𝑢), 𝑔′(𝑢)

)
represents the corresponding velocity field. For pure convection simulation, we use the third-order Runge-Kutta 

temporal discretization with the following butcher table:

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6
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Table 3.1

(Swirling deformation flow) 𝐿1 , 𝐿2 , and 𝐿∞ errors and corresponding orders of 
accuracy of the EL-RK-FV-WENO scheme for (3.2) with initial condition (3.3) at 
𝑡 = 1.5 with CFL = 1.

mesh 𝐿1 error order 𝐿2 error order 𝐿∞ error order 
100× 100 7.28E-04 �- 4.98E-03 �- 1.05E-01 �- 
200× 200 1.19E-04 2.62 8.00E-04 2.64 1.73E-02 2.59 
300× 300 3.64E-05 2.91 2.46E-04 2.91 5.70E-03 2.74 
400× 400 1.55E-05 2.97 1.05E-04 2.96 2.67E-03 2.64 

Fig. 3.4. (Swirling deformation flow) Log-log plot of CFL numbers versus 𝐿2 errors with fixed meshes 160 × 160 and 320 × 320 at 𝑡 = 1.5 of the EL-RK-FV-WENO 
scheme.

For convection-diffusion simulation, we apply IMEX(2,3,3) in [3] with the following butcher tables:

Implicit Scheme Explicit Scheme

0 0 0 0
𝛾 0 𝛾 0

1 − 𝛾 0 1 − 2𝛾 𝛾

0 1
2

1
2

0 0 0 0
𝛾 𝛾 0 0

1 − 𝛾 𝛾 − 1 2 (1 − 𝛾) 0
0 1

2
1
2

where 𝛾 = (3 +
√
3)∕6.

3.1. Linear models

Example 3.1. (Swirling deformation flow). Consider the following equation:

𝑢𝑡 − (2𝜋cos2(𝑥
2 
)sin(𝑦)𝑔(𝑡)𝑢)𝑥 + (2𝜋sin(𝑥)cos2(𝑦 

2
)𝑔(𝑡)𝑢)𝑦 = 0, 𝑥, 𝑦 ∈ [−𝜋,𝜋], (3.2)

where 𝑔(𝑡) = cos(𝜋𝑡∕𝑇 ) with 𝑇 = 1.5. We first consider (3.2) with the following smooth initial condition:

𝑢(𝑥, 𝑦,0) =
⎧⎪⎨⎪⎩
𝑟𝑏
0cos( 𝑟𝑏(𝐱)𝜋

2𝑟𝑏0
)6 if 𝑟𝑏(𝐱) < 𝑟𝑏

0,

0, otherwise,
(3.3)

where 𝑟𝑏
0 = 0.3𝜋, 𝑟𝑏(𝐱) =

√
(𝑥− 𝑥𝑏

0)
2 + (𝑦− 𝑦𝑏

0)
2 and the center of the cosine bell (𝑥𝑏

0, 𝑦
𝑏
0) = (0.3𝜋,0). Table 3.1 shows the 𝐿1, 𝐿2, and 

𝐿∞ errors and corresponding orders of accuracy for the proposed scheme. As indicated, the expected 3rd-order spatial accuracy is 
achieved through mesh rfinement.

In Fig. 3.4, by varying the CFL number while fixing the spatial mesh, we investigate the temporal order of accuracy. For the results 
using mesh 160 × 160, the proposed scheme demonstrates 3rd-order temporal accuracy and is stable when CFL is less than 21. For 
the mesh 320 × 320, stability is observed at least up to CFL = 30, corroborating our time-step constraint estimate (2.18).

To validate the essentially non-oscillatory nature of the proposed WENO reconstruction, we consider a discontinuous initial condi

tion featuring a cylinder with a notch, a cone, and a smooth bell as shown in Fig. 3.5. Fig. 3.6 display the mesh plots of the numerical 
solutions at 𝑡 = 0.75 (left) and 𝑡 = 1.5 (right). The swirling deformation flow significantly deforms the solution at half the period 
(𝑡 = 0.75) and then reforms it back to its initial state at 𝑡 = 1.5. On the left side of Fig. 3.7, we test the proposed scheme using our 
previous WENO-ZQ reconstruction from [44] and observe small numerical oscillations. On the right side of Fig. 3.7, we present the 
cross-sections of the numerical solutions of the EL-RK-FV scheme equipped with both the new WENO-ZQ reconstruction and our 
previous WENO-ZQ from [44]. The results indicate that the new WENO-ZQ reconstruction performs better in controlling numerical 
oscillations.
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Fig. 3.5. (Swirling deformation flow) Mesh plot and contour plot of a discontinuous initial condition. 

Fig. 3.6. (Swirling deformation flow) Mesh plot and contour plot of the numerical solution of the EL-RK-FV-WENO scheme with CFL = 10.2 and mesh size 200× 200
at 𝑡 = 0.75 (left) and at 𝑡 = 1.5 (right).

Fig. 3.7. (Swirling deformation flow) Left: Mesh plot of the numerical solution of the EL-RK-FV scheme using the WENO-ZQ reconstruction in [44] with CFL = 10.2 
and mesh size 200 × 200 at 𝑡 = 1.5. Right: Cross-sections of the numerical solutions of the EL-RK-FV scheme equipped with the new WENO-ZQ reconstruction and our 
previous WENO-ZQ in [44] with CFL = 10.2 and mesh size 200 × 200 at 𝑡 = 1.5 and 𝑦 ≈ 2.04.

In summary, this example illustrates the effectiveness of the proposed EL-RK-FV evolving strategy for the convection terms. This 
strategy, which involves remapping from Eulerian to Lagrangian spatial approximations, not only achieves high-order spatial and 
temporal accuracy but also allows for large time-steps while maintaining a non-oscillatory property.
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Table 3.2

(The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) 𝐿1 , 𝐿2 , and 𝐿∞

errors and corresponding orders of accuracy of the EL-RK-FV-WENO scheme for 
(3.4) with initial condition (3.5) at 𝑡 = 0.5 with CFL = 1.

mesh 𝐿1 error order 𝐿2 error order 𝐿∞ error order 
20× 20 2.18E-03 �- 1.38E-02 �- 2.95E-01 �- 
40× 40 3.01E-04 2.85 2.05E-03 2.75 9.50E-02 1.63 
80× 80 3.33E-05 3.18 1.58E-04 3.70 6.40E-03 3.89 
160× 160 4.10E-06 3.02 1.80E-05 3.13 2.88E-04 4.47 
320× 320 4.77E-07 3.10 2.10E-06 3.11 3.20E-05 3.17 

Fig. 3.8. (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Log-log plot of CFL numbers versus 𝐿2 errors with fixed mesh 160 × 160 at 𝑡 = 0.5 for the 
EL-RK-FV-WENO scheme.

Table 3.3

(The 0D2V Leonard-Bernstein linearized Fokker-Planck 
equation) Settings of the Maxwellians 𝑓𝑀1 and 𝑓𝑀2 .

𝑓𝑀1 𝑓𝑀2

𝑛 1.990964530353041 1.150628123236752 
𝑣̄𝑥 0.4979792385268875 -0.8616676237412346 
𝑣̄𝑦 0 0 
𝑇 2.46518981703837 0.4107062104302872 

Example 3.2. (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Consider the following equation:

𝑓𝑡 +
1
𝜖

(
(𝑣𝑥 − 𝑣𝑥)𝑓

)
𝑣𝑥

− 1
𝜖

(
(𝑣𝑦 − 𝑣𝑦)𝑓

)
𝑣𝑦

= 1
𝜖
𝐷
(
𝑓𝑣𝑥𝑣𝑥

+ 𝑓𝑣𝑦𝑣𝑦

)
,  𝑣𝑥, 𝑣𝑦 ∈ [−2𝜋,2𝜋] (3.4)

with zero boundary conditions and an equilibrium solution by the given Maxwellian:

𝑓𝑀 (𝑣𝑥, 𝑣𝑦) =
𝑛 

2𝜋𝑅𝑇
exp

(
(𝑣𝑥 − 𝑣𝑥)2 + (𝑣𝑦 − 𝑣𝑦)2

2𝑅𝑇

)
, (3.5)

where, 𝜖 = 1, gas constant 𝑅 = 1∕6, temperature 𝑇 = 3, thermal velocity 𝑣𝑡ℎ =
√
2𝑅𝑇 =

√
2𝐷 = 1, number density 𝑛 = 𝜋, and bulk 

velocities 𝑣𝑥 = 𝑣𝑦 = 0. For spatial and temporal accuracy tests, we choose 𝑓 (𝑣𝑥, 𝑣𝑦,0) = 𝑓𝑀 (𝑣𝑥, 𝑣𝑦). In Table 3.2, we present the 𝐿1, 
𝐿2, and 𝐿∞ errors and the corresponding orders of accuracy for the proposed scheme. The results demonstrate a consistent 3rd-order 
spatial accuracy.

By fixing the spatial mesh and varying the CFL number, the temporal order of accuracy is investigated in Fig. 3.8. The proposed 
scheme exhibits 3rd-order temporal accuracy and allows the use of large time-steps, as evidenced by the stability for high CFL 
numbers.

To test the relaxation of the system, we choose the initial condition 𝑓 (𝑣𝑥, 𝑣𝑦, 𝑡 = 0) = 𝑓𝑀1(𝑣𝑥, 𝑣𝑦) + 𝑓𝑀2(𝑣𝑥, 𝑣𝑦), where the pa

rameters of each Maxwellian, 𝑓𝑀1 and 𝑓𝑀2, are detailed in Table 3.3. The two Maxwellians are shifted along the 𝑣𝑥 direction with 
𝑣𝑦 = 0. The evolution of the numerical results, illustrated in Fig. 3.9, shows that after 𝑡 ≥ 3, there is no discernible difference between 
the numerical solution and the solution at 𝑡 = 3, validating the efficacy of the proposed scheme.

In Fig. 3.10, we present the capability of the proposed scheme in preserving various physical conservative quantities. The results 
indicate that while the scheme is effective in conserving mass, it does not maintain the other quantities to the machine precision.

To encapsulate, this example primarily demonstrates the effectiveness of the IMEX temporal discretization, which combines the 
implicit solver for the diffusion term and the EL evolving strategy for the convection terms, enabling the use of large time-steps.
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Fig. 3.9. (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Contour plots of the numerical results of the EL-RK-FV-WENO scheme with CFL = 3 and 
mesh size 100 × 100 at 𝑡 = 0 (initial condition), 𝑡 = 0.2, 𝑡= 0.4, 𝑡= 0.6, 𝑡= 3, and 𝑡= 20.

Fig. 3.10. (The 0D2V Leonard-Bernstein linearized Fokker-Planck equation) Relative deviation (or deviation) of number density, bulk velocity in 𝑣𝑥 , bulk velocity in 
𝑣𝑦 , and temperature for the EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh 160 × 160 from 𝑡= 0 to 𝑡 = 20.

3.2. Nonlinear models

Example 3.3. (Kelvin-Helmholtz instability problem) Consider the guiding center Vlasov model [33,19]:

𝜌𝑡 +∇ ⋅ (𝐄⟂𝜌) = 0,

−ΔΦ= 𝜌, 𝐄⟂ =
(
−Φ𝑦,Φ𝑥

)
,

(3.6)

with the periodic boundary condition and the following initial condition:
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Table 3.4

(Kelvin-Helmholtz instability problem) 𝐿1 , 𝐿2 , and 𝐿∞ errors and corresponding 
orders of accuracy of the EL-RK-FV-WENO scheme for (3.6) with initial condition 
(3.7) at 𝑡 = 5 with CFL = 1.

mesh 𝐿1 error order 𝐿2 error order 𝐿∞ error order 
16× 16 6.79E-03 �- 1.11E-02 �- 6.68E-02 �- 
32× 32 5.48E-04 3.63 9.46E-04 3.55 1.18E-02 2.50 
64× 64 4.35E-05 3.66 7.15E-05 3.73 1.43E-03 3.05 
128× 128 4.37E-06 3.31 6.45E-06 3.47 1.98E-04 2.85 
256× 256 5.23E-07 3.06 6.72E-07 3.26 1.73E-05 3.51 

Fig. 3.11. (Kelvin-Helmholtz instability problem) Left: Log-log plot of CFL numbers versus 𝐿2 errors with fixed mesh 256×256 at 𝑡 = 5 of the EL-RK-FV-WENO scheme. 
Right: Contour plot of the numerical solution of the EL-RK-FV-WENO scheme with CFL = 10.2 and with mesh 256 × 256 at 𝑡 = 40.

Fig. 3.12. (Kelvin-Helmholtz instability problem) Deviation of mass, relative deviation of energy and entropy for the EL-RK-FV-WENO scheme with CFL = 10.2 and 
with mesh 256 × 256 from 𝑡= 0 to 𝑡 = 50.

𝜌(𝑥, 𝑦,0) = sin(𝑦) + 0.015cos(0.5𝑥), 𝑥 ∈ [0,4𝜋], 𝑦 ∈ [0,2𝜋], (3.7)

where 𝜌 is the charge density and 𝐄 is the electric field. The Poisson’s equation in (3.6) is solved using a Fast Fourier Transform 
(FFT) solver, with reconstructions facilitating the exchange of nodal and modal information [44]. We validate the 3rd-order spatial 
and temporal accuracy of the proposed scheme in Table 3.4 and on the left side of Fig. 3.11. Additionally, the stability of the scheme 
with large time-steps up to CFL = 50 is verfied.

On the right side of Fig. 3.11, we display the contour plot of the numerical solution of the EL-RK-FV-WENO scheme at 𝑡 = 40. The 
result is comparable with the one of our fourth-order SL-FV-WENO scheme in [44].

In Fig. 3.12, we show the deviation of mass, relative deviation of energy and entropy of the proposed scheme from 𝑡 = 0 to 
𝑡 = 50. As shown, the proposed scheme is mass conservative. The magnitudes of relative deviation of energy and entropy results are 
comparable with the ones in [44].

This nonlinear example effectively showcases the success of the generalization strategy for nonlinear model outlined in Section 2.3, 
which is achieved with minimal additional cost.

Example 3.4. (Incompressible Navier-Stokes equations) The governing equations are as follows:

𝜔𝑡 + (𝑢𝜔)𝑥 + (𝑣𝜔)𝑦 = 𝜈(𝜔𝑥𝑥 +𝜔𝑦𝑦),

Δ𝜓 = 𝜔, (𝑢, 𝑣) =
(
𝜓𝑦,𝜓𝑥

)
,

(3.8)
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Table 3.5

(Incompressible Navier-Stokes equations) 𝐿1 , 𝐿2 , and 𝐿∞ errors and corresponding 
orders of accuracy of the EL-RK-FV-WENO scheme for (3.8) with initial condition 
(3.9) at 𝑡 = 0.5 with CFL = 1.

mesh 𝐿1 error order 𝐿2 error order 𝐿∞ error order 
16× 16 3.90E-03 �- 4.65E-03 �- 1.14E-02 �- 
32× 32 4.88E-04 3.00 5.82E-04 3.00 1.45E-03 2.98 
64× 64 6.09E-05 3.00 7.27E-05 3.00 1.82E-04 2.99 
128× 128 7.61E-06 3.00 9.08E-06 3.00 2.29E-05 2.99 
256× 256 9.51E-07 3.00 1.13E-06 3.00 2.86E-06 3.00 

Fig. 3.13. (Incompressible Navier-Stokes equations) Left: log-log plot of CFL numbers versus 𝐿2 errors with fixed mesh 256 × 256 at 𝑡 = 0.5 of the EL-RK-FV-WENO 
scheme. Right: contour plot of the numerical solution of the EL-RK-FV-WENO scheme for the vortex patch problem with CFL = 10.2 and with mesh 256×256 at 𝑡 = 5.

where 𝜔 is the vorticity of the flow, (𝑢, 𝑣) is the velocity field, and 𝜈 is the kinematic viscosity, which is set to be 1 
100 . We first consider 

an initial condition given by:

𝜔(𝑥, 𝑦,0) = −2sin(𝑥) sin(𝑦), 𝑥 ∈ [0,2𝜋],  𝑦 ∈ [0,2𝜋] (3.9)

with the exact solution 𝜔(𝑥, 𝑦, 𝑡) = −2sin(𝑥) sin(𝑦) exp(−2𝑡𝜈). Similarly, 3rd-order spatial and temporal order of accuracy of validated 
in Table 3.5 and on the left side of Fig. 3.13 respectively. For this problem, we observe that large time-steps are allowed for the 
proposed scheme up to CFL = 40.

For a more complex scenario, we consider the incompressible Navier-Stokes equation (3.8) on [0,2𝜋]2 with the following initial 
condition (the vortex patch problem)

𝜔(𝑥, 𝑦,0) =
⎧⎪⎨⎪⎩
−1, 𝜋

2 ≤ 𝑥 ≤ 3𝜋
2 , 

𝜋

4 ≤ 𝑦 ≤ 3𝜋
4 ;

1, 𝜋

2 ≤ 𝑥 ≤ 3𝜋
2 , 

5𝜋
4 ≤ 𝑦 ≤ 7𝜋

4 ;
0 otherwise

(3.10)

with zero boundary condition. We show the contour plot of the numerical solution of the proposed scheme at 𝑡 = 5 on the right side 
of Fig. 3.13. The numerical result on the right of Fig. 3.13 is comparable with the one in [41].

Rflecting on this example, we note that the proposed EL-RK-FV-WENO scheme is able to simulate a nonlinear convection-diffusion 
equation with all the designed good properties. This is one of the major reasons why this EL-RK-FV-WENO scheme is attractive 
compared with our previous SL-FV-WENO scheme [44].

4. Conclusion

In this paper, we introduce a high-order EL-RK-FV-WENO scheme for nonlinear convection-diffusion equations. By defining a 
modfied velocity field and corresponding flux-form semi-discretization, the scheme relaxes the time-step constraint. To ensure mass 
conservation, high order accuracy in both space and time, and high resolution for discontinuous solutions, while enabling explicitly 
large time-stepping sizes, the spatial discretization is designed to align with the EL formulation and surmount the challenges posed 
by the modfied velocity field. In this paper, we introduce a scheme with spatial-temporal third-order convergence. Theoretically, a 
straightforward extension to the fourth order is possible and will be the focus of our future research. It is well known that proposing a 
robust and essentially non-oscillatory scheme for the transport of discontinuous solutions is far from trivial. To address this challenge, 
we propose an improved WENO scheme. Compared with the SL-FV scheme in [44], the proposed EL-RK-FV-WENO scheme is capable 
of simulating nonlinear convection-diffusion equations while inheriting the ability to apply large time-steps. Extensive numerical 
tests, ranging from the linear convection-diffusion equation and the Navier-Stokes equations to their zero-diffusive limit (nonlinear 
Euler equations), are conducted, verifying the effectiveness of the proposed scheme.
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Appendix A. Third-order WENO-ZQ reconstruction method for Eulerian mesh

In this appendix, we introduce the 3rd-order WENO-ZQ reconstruction for the Eulerian mesh. For convenience, we assume Δ𝑥𝑖 ≡
Δ𝑥 and Δ𝑦𝑗 ≡Δ𝑦 for all 𝑖, 𝑗. We dfine 𝜇𝑖(𝑥) ∶=

𝑥−𝑥𝑖

Δ𝑥 , 𝜈𝑗 (𝑦) ∶=
𝑦−𝑦𝑗

Δ𝑦 and introduce a set of local orthogonal polynomials as {𝑃 (𝑖,𝑗)
𝑙

(𝑥, 𝑦)}
for a given cell 𝐼𝑖,𝑗 :

𝑃
(𝑖,𝑗)
1 ∶= 1, 𝑃

(𝑖,𝑗)
2 ∶= 𝜇𝑖(𝑥), 𝑃

(𝑖,𝑗)
3 ∶= 𝜈𝑗 (𝑦),

𝑃
(𝑖,𝑗)
4 ∶= 𝜇2

𝑖 (𝑥) −
1 
12

, 𝑃
(𝑖,𝑗)
5 ∶= 𝜇𝑖(𝑥)𝜈𝑗 (𝑦), 𝑃

(𝑖,𝑗)
6 ∶= 𝜈2𝑗 (𝑦) −

1 
12

.
(A.1)

We assume that 𝑢5 ∶= 𝑢𝑖,𝑗 and 𝐼5 ∶= 𝐼𝑖,𝑗 , while {𝑢𝑠} and {𝐼𝑠} represent corresponding cell averages and Eulerian cells based on 
the serial number in Fig. A.14. The reconstruction procedure is performed as follows:

Step 1 Construct a quadratic polynomial 𝑞0(𝑥, 𝑦) =
6 ∑

𝑙=1
𝑎

𝑞0
𝑙

𝑃
(𝑖,𝑗)
𝑙

(𝑥, 𝑦) using a special least-squares procedure. We dfine

𝑉 ∶= {𝑝(𝑥, 𝑦) ∈ 𝑃 2(𝐼𝑖,𝑗 )| 1 
Δ𝑥Δ𝑦 ∫

𝐼𝑠

𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑠,  𝑠 = 2,4,5,6,8},

𝐸(𝑝(𝑥, 𝑦)) ∶=
⎡⎢⎢⎢⎣
∑

𝑠=1,3,7,9

⎛⎜⎜⎜⎝
1 

Δ𝑥Δ𝑦 ∫
𝐼𝑠

𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦− 𝑢𝑠

⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎦

1
2

.

Then, we determine that 𝑞0(𝑥, 𝑦) is the unique polynomial satisfying:

𝐸(𝑞0(𝑥, 𝑦)) = min
𝑝∈𝑉

𝐸(𝑝(𝑥, 𝑦)). (A.2)

Step 2 Construct eight linear polynomials {𝑞𝑘(𝑥, 𝑦)}8
𝑘=1 = {

3 ∑
𝑙=1

𝑎
𝑞𝑘

𝑙
𝑃
(𝑖,𝑗)
𝑙

(𝑥, 𝑦)} satisfying:

1 
Δ𝑥Δ𝑦 ∬

𝐼5

𝑞𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢5 for 𝑘 = 1,2,… ,8, (A.3)

and

1 
Δ𝑥Δ𝑦 ∬

𝐼𝑠

𝑞𝑘(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝑢𝑠, (A.4)
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1 2 3

4 5 6

7 8 9

𝑖− 1 𝑖 𝑖+ 1

𝑗 − 1

𝑗

𝑗 + 1

Fig. A.14. Stencil for the 3rd-order WENO-ZQ reconstruction. 

where

𝑠 = 1,2 for 𝑘 = 1; 𝑠 = 2,3 for 𝑘 = 2;

𝑠 = 3,6 for 𝑘 = 3; 𝑠 = 6,9 for 𝑘 = 4;

𝑠 = 8,9 for 𝑘 = 5; 𝑠 = 7,8 for 𝑘 = 6;

𝑠 = 4,7 for 𝑘 = 7; 𝑠 = 1,4 for 𝑘 = 8.

Step 3 Rewrite 𝑞0(𝑥, 𝑦) as in [29,30,46,4]:

𝑞0(𝑥, 𝑦) = 𝛾0

(
1 
𝛾0

𝑞0(𝑥, 𝑦) −
8 ∑

𝑘=1

𝛾𝑘

𝛾0
𝑞𝑘(𝑥, 𝑦)

)
+

8 ∑
𝑘=1

𝛾𝑘𝑞𝑘(𝑥, 𝑦), (A.5)

where {𝛾𝑘}8𝑘=0 is a set of positive linear weights with their sum being 1. The linear weights control the balance between optimal 
reconstruction accuracy and avoiding numerical oscillation. In our numerical tests, we set 𝛾0 = 0.6 and 𝛾1 = … = 𝛾8 = 0.05 for 
such balance.

Step 4 Compute the smoothness indicators of {𝑞𝑘(𝑥, 𝑦)}8
𝑘=0 [26]:

𝛽0 =
1 

Δ𝑥Δ𝑦

∑
𝑙1+𝑙2≤2∬𝐼5

(
Δ𝑥𝑙1Δ𝑦𝑙2 𝜕|𝑙1+𝑙2|

𝜕𝑙1
𝜕𝑙2

𝑞0(𝑥, 𝑦)

)2

𝑑𝑥𝑑𝑦,

𝛽𝑘 =
1 

Δ𝑥Δ𝑦

∑
𝑙1+𝑙2≤1∬𝐼5

(
Δ𝑥𝑙1Δ𝑦𝑙2 𝜕|𝑙1+𝑙2|

𝜕𝑙1
𝜕𝑙2

𝑞𝑘(𝑥, 𝑦)

)2

𝑑𝑥𝑑𝑦, for 𝑘 = 1,… ,8.

The explicit expressions of {𝛽𝑘}8𝑘=0 are given by

𝛽0 =
(
𝑎

𝑞0
2
)2 + (𝑎𝑞0

3
)2 + 13

3 
(
𝑎

𝑞0
4
)2 + 7

6
(
𝑎

𝑞0
5
)2 + 13

3 
(
𝑎

𝑞0
6
)2

,

𝛽𝑘 =
(
𝑎

𝑞𝑘

2
)2 + (𝑎𝑞𝑘

3
)2

for 𝑘 = 1,2,… ,8.
(A.6)

Step 5 Compute the nonlinear weights {𝜔𝑘}8𝑘=0 [8,46]:

𝜔𝑘 =
𝜔̃𝑘

8 ∑
𝑙=0

𝜔̃𝑙

, (A.7)

where 

𝜔̃𝑘 = 𝛾𝑘

(
1 + 𝜏

3
2

𝛽𝑘 + 𝜖

)
for 𝑘 = 0,1,… ,8 (A.8)

with
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𝜏 =

8 ∑
𝑘=1
|𝛽0 − 𝛽𝑘|
8 

. (A.9)

When the exact solution is smooth over the entire large stencil 
9 ⋃

𝑠=1
𝐼𝑠 and Δ𝑥 ∼Δ𝑦, we can prove

𝜔𝑘 =
⎧⎪⎨⎪⎩
𝛾𝑘

(
1 +𝑂

(
Δ𝑥

5
2
))

, if 𝐷𝑢|(𝑥𝑖,𝑦𝑗 ) ≠ 0 and 𝐷2𝑢|(𝑥𝑖,𝑦𝑗 ) ≠ 0,

𝛾𝑘

(
1 +𝑂

(
Δ𝑥2

))
, if 𝐷𝑢|(𝑥𝑖,𝑦𝑗 ) = 0 and 𝐷2𝑢|(𝑥𝑖,𝑦𝑗 ) ≠ 0,

by Taylor expansion.

Step 6 Construct the final reconstruction polynomial as follows:

𝑢WENO
𝑖,𝑗 (𝑥, 𝑦) = 𝜔0

(
1 
𝛾0

𝑞0(𝑥, 𝑦) −
8 ∑

𝑘=1

𝛾𝑘

𝛾0
𝑞𝑘(𝑥, 𝑦)

)
+

8 ∑
𝑘=1

𝜔𝑘𝑞𝑘(𝑥, 𝑦). (A.10)

Eventually, we dfine that 𝑢WENO(𝑥, 𝑦) is the piecewise polynomial satisfying:

𝑢WENO(𝑥, 𝑦) = 𝑢WENO
𝑖,𝑗 (𝑥, 𝑦) (𝑥, 𝑦) ∈ 𝐼𝑖,𝑗 for all 𝑖, 𝑗. (A.11)

Remark A.1. 𝑢WENO(𝑥, 𝑦) offers a 3rd-order approximation to 𝑢(𝑥, 𝑦, 𝑡), provided {𝑢𝑖,𝑗} is sufficiently accurate. Assuming 𝑢(𝑥, 𝑦, 𝑡) is 
sufficiently smooth and Δ𝑥 ∼Δ𝑦, we can prove this as follows:

𝑢WENO
𝑖,𝑗 (𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡)

=
(
𝛾0 +𝜔0 − 𝛾0

)( 1 
𝛾0

𝑞0(𝑥, 𝑦) −
8 ∑

𝑘=1

𝛾𝑘

𝛾0
𝑞𝑘(𝑥, 𝑦)

)
+

8 ∑
𝑘=1

(
𝛾𝑘 +𝜔𝑘 − 𝛾𝑘

)
𝑞𝑘(𝑥, 𝑦)

−

( 8 ∑
𝑘=0

𝛾𝑘 +
8 ∑

𝑘=0

(
𝜔𝑘 − 𝛾𝑘

))
𝑢(𝑥, 𝑦, 𝑡)

=
(
𝜔0 − 𝛾0

)( 1 
𝛾0

(
𝑞0(𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡)

)
−

8 ∑
𝑘=1

𝛾𝑘

𝛾0

(
𝑞𝑘(𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡)

))

+ 𝑞0(𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡) +
8 ∑

𝑘=1

(
𝜔𝑘 − 𝛾𝑘

)(
𝑞𝑘(𝑥, 𝑦) − 𝑢(𝑥, 𝑦, 𝑡)

)
= 𝑂(Δ𝑥2)

(
𝑂(Δ𝑥3) +𝑂(Δ𝑥2)

)
+𝑂(Δ𝑥3) +𝑂(Δ𝑥2)𝑂(Δ𝑥2)

= 𝑂(Δ𝑥3), for (𝑥, 𝑦) ∈ 𝐼𝑖,𝑗 .

Data availability

Data will be made available on request.
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