
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier.com/locate/jcp

An asymptotic-preserving conservative semi-Lagrangian scheme 

for the Vlasov-Maxwell system in the quasi-neutral limit

Hongtao Liu a, Xiaofeng Cai b,c,∗, , Yong Cao d,∗, Giovanni Lapenta a

a Center for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Leuven, 3001, Belgium
b Research Center of Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, 519087, China
c Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, 
Zhuhai, 519087, China
d School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, 518055, China

A R T I C L E I N F O A B S T R A C T 

Keywords:

Plasma physics

Vlasov-Maxwell system

Semi-Lagrangian scheme

Quasi-neutral limit

Asymptotic preserving scheme

In this paper, we present an asymptotic-preserving conservative Semi-Lagrangian (CSL) scheme 
for the Vlasov-Maxwell system in the quasi-neutral limit, where the Debye length is negligible 
compared to the macroscopic scales of interest. The proposed method relies on two key 
ingredients: the CSL scheme and a reformulated Maxwell equation (RME). The CSL scheme is 
employed for the phase space discretization of the Vlasov equation, ensuring mass conservation 
and removing the Courant-Friedrichs-Lewy restriction, thereby enhancing computational efficiency. 
To efficiently calculate the electromagnetic field in both non-neutral and quasi-neutral regimes, 
the RME is derived by semi-implicitly coupling the Maxwell equation and the moments of the 
Vlasov equation. Furthermore, we apply Gauss’s law correction to the electric field derived from 
the RME to prevent unphysical charge separation. The synergy of the CSL and RME enables the 
proposed method to provide reliable solutions, even when the spatial and temporal resolution 
might not fully resolve the Debye length and plasma period. As a result, the proposed method 
offers a unified and accurate numerical simulation approach for complex electromagnetic plasma 
physics while maintaining efficiency in both quasi-neutral and non-quasi-neutral regimes. Several 
numerical experiments, ranging from 3D to 5D simulations, are presented to demonstrate the 
accuracy, stability, and efficiency of the proposed method.

1. Introduction

Electromagnetic plasma finds applications in various fields such as space propulsion, material processing, space physics, astro-

physical physics, and confined fusion devices [1]. However, accurately simulating plasma dynamics numerically poses significant 
challenges due to the diverse range of physical scenarios involved. To describe plasma dynamics, two major models are commonly 
used: fluid models, which focus on macroscopic quantities in physical space, and kinetic models, which consider microscopic distri-
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bution functions in phase space. While fluid models are generally efficient, they may not adequately capture local kinetic scales [2]. 
Given the complex multi-scale nature of many plasma phenomena, a kinetic model is desired when aiming for a unified and accurate 
method capable of addressing cross-scales.

One basic kinetic model for electromagnetic plasma simulations is the Vlasov-Maxwell (VM) system. A critical parameter in this 
model is the normalized Debye length 𝜆, which represents the ratio of the Debye length to the macroscopic scales of interest. It 
indicates the strength of Debye shielding and charge separation effects. When 𝜆 → 0, the VM system enters the quasi-neutral limit, 
where charge separations can be neglected. On the other hand, when 𝜆 ∼ 𝑂(1), the system transitions into the non-quasi-neutral 
regime, requiring the consideration of charge separation effects. When both quasi-neutral and non-quasi-neutral regimes coexist, 
neither quasi-neutral models nor non-neutral models are appropriate to describe the multi-scale transitions [3], posing a significant 
challenge for numerically simulating the complex electromagnetic plasma physics. Furthermore, traditional explicit schemes require 
numerical grid spacing and time step sizes that should resolve the microscopic normalized Debye length 𝜆 while conducting simula-

tions on a macroscopic scale, which is time-consuming. In this paper, our aim is to propose an asymptotic-preserving VM solver that 
preserves accuracy and efficiency in both the quasi-neutral and the non-quasi-neutral regimes.

Several methods have been proposed for VM system, broadly falling into two categories: particle-based methods and grid-based 
methods. One well-known particle-based approach is the Particle-In-Cell (PIC) method, which traces the motion of macro-particles 
[4]. Although PIC is computationally efficient [2,5,6], it suffers from numerical noise, particularly when dealing with small perturbed 
plasma flows [7,8]. Alternatively, the grid-based methods directly solve the kinetic equation in phase space [9–15] and are referred 
to as the direct kinetic method (DKM) [16,17]. The DKM is free from numerical noise and enables high-order accuracy for phase 
space discretization. Various efficient and accurate DKM solvers have been proposed, including Eulerian or semi-Lagrangian finite 
difference [18–20], finite element [21–23], finite volume [24–27], and spectral methods [7,28]; detailed reviews of these methods 
can be found in [29–31]. Among these DKM solvers, we focus on the conservative semi-Lagrangian (CSL) scheme, which eliminates 
the need for the Courant-Friedrichs-Lewy (CFL) condition and ensures mass conservation [32–37]. However, it is important to note 
that most of these methods were primarily developed for non-quasi-neutral plasma flows.

For problems that involve both quasi-neutral and non-quasi-neutral regimes simultaneously, traditional methods require resolving 
all scales to ensure stability and consistency, even when certain scales may not be critical. However, directly resolving the smallest 
scale throughout the entire domain is practically prohibitive. To address this challenge, one numerical strategy is the hybrid method 
[38,39]. This method divides the computation domain into subdomains with different governing equations corresponding to specific 
flow regimes. However, establishing an appropriate criterion to couple different methods requires specific treatments, and identifying 
the dynamic interface between subdomains is not a trivial task.

Alternatively, a promising multiscale method, known as the Asymptotic-Preserving (AP) scheme [40,41], has been proposed to 
provide a unified approach without the limitation of characteristic parameters on the numerical ones, thereby avoiding the challenges 
of the hybrid method. A key advantage of AP schemes is their automatic alignment with the discretization of corresponding limiting 
models when characteristic parameters tend to zero. In the field of plasma physics, several AP schemes have been developed, including 
the Vlasov-Poisson [42–45], BGK-Vlasov-Poisson [27,46], and VM models [3,47]. Notably, the work of [3] presents a significant 
advancement by reformulating the Maxwell equation into the reformulated Maxwell equation (RME). This formulation bridges the 
gap between non-neutral and quasi-neutral regimes, creating a unified framework through the use of a generalized Ohm’s law. 
Consequently, a smooth transition between cross-regimes becomes achievable. Inspired by [3], this study couples the Vlasov equation 
with the RME, but a conservative semi-Lagrangian solver is utilized instead of the PIC solver as done in [3]. Remarkably, to the best 
of our knowledge, no AP semi-Lagrangian scheme has been proposed for the VM system in the quasi-neutral limit yet.

The main contribution of this paper is the development of an AP conservative semi-Lagrangian scheme for the VM system, which is 
based on two key components: the CSL scheme and the RME. Specifically, the CSL scheme is utilized for the phase space discretization 
of the Vlasov equation, allowing the method to remove the CFL restriction and preserve system mass. The RME provides a straight-

forward and efficient approach for investigating the electromagnetic field in both quasi-neutral and non-quasi-neutral regimes, by 
semi-implicitly coupling macroscopic moments of the Vlasov equations and electromagnetic field equations. Additionally, the electric 
field obtained from the RME is enforced with Gauss’s law correction to avoid unphysical charge separation. The combination of the 
RME and the CSL scheme enables the proposed method to overcome numerical constraints arising from the normalized Debye length. 
Importantly, the proposed method achieves a comparable numerical cost per time step to explicit schemes without requiring nonlin-

ear iteration. Moreover, the method can be extended to multidimensional plasma simulations using dimensional splitting procedures, 
further enhancing its efficiency. Finally, several numerical experiments are presented to demonstrate the accuracy, stability, and 
efficiency of the proposed method for the VM system.

The paper is organized as follows. Section 2 introduces the Vlasov-Maxwell system and its reformulated form. In Section 3, we 
describe the details of the asymptotic-preserving conservative semi-Lagrangian scheme. The analysis of the method’s properties is 
presented in Section 4. Section 5 presents the results of numerical studies. Finally, a summary is provided in Section 6.

2. The Vlasov-Maxwell system and its reformulated form

In this section, we provide a comprehensive overview of the Vlasov-Maxwell (VM) system and its reformulated form. We begin 
by introducing the original VM system and its nondimensionalization. Recognizing the challenge posed by the degeneracy in the 
quasi-neutral limit in the VM system, we present the reformulated VM system, where reformulated Maxwell equations (RME) are 
formed by the coupling of the macroscopic moments of the Vlasov equation and Maxwell equations.
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2.1. The Vlasov-Maxwell system

In this paper, our focus lies on the nonrelativistic VM system, which describes the dynamics of the fully ionized plasma. The 
evolution of electrons and ions follows the Vlasov equation,

𝜕𝑡𝑓𝑠 + 𝒗𝑠 ⋅∇𝒙𝑓𝑠 +
𝑞𝑠

𝑚𝑠

(
𝑬 + 𝒗𝑠 ×𝑩

)
⋅∇𝒗𝑠𝑓𝑠 = 0, (1)

where 𝑓𝑠
(
𝒙,𝒗𝒔, 𝑡

)
represents the distribution function for species 𝑠 at position 𝒙 in physics space, with velocity 𝒗𝒔 at time t. Besides, 

𝑞𝑠 and 𝑚𝑠 denote the charge and mass of species 𝑠, respectively, while 𝑬 and 𝑩 correspond to the electric and magnetic fields. In 
the current paper, we consider the species 𝑠 to represent either a single-charged ion (s = i) or an electron (s = e). However, it is 
worth noting that the framework and methodology presented in the following sections can be generalized to accommodate arbitrary 
species.

It is well-established that the self-consistent fields 𝑬 and 𝑩 can be determined from the Maxwell equations,

𝜕𝑡𝑬 − 𝑐2∇ ×𝑩 = −𝑐2𝜇0𝑱 ,
𝜕𝑡𝑩 +∇×𝑬 = 0, (2)

where 𝑐 represents the speed of light, 𝜇0 denotes the vacuum permeability, and 𝑱 represents the total current density. Additionally, 
the electromagnetic fields are subject to two constraints known as Gauss’s law and the Thomson-Maxwell equation,

∇ ⋅𝑬 = 𝜌
/
𝜀0, ∇ ⋅𝑩 = 0, (3)

where 𝜀0 is the vacuum permittivity and 𝜌 is the charge density. It is worth noting that these two constraints are valid for 𝑡 > 0 as 
long as they are satisfied at 𝑡 = 0. However, when considering numerical approximations, these constraints may not always hold true. 
To address this issue, several corrections [48–50] have been proposed to enforce the constraints. In this paper, we employ elliptic 
correction of the electric field [3,51] to enforce Gauss’s law, and detailed information will be presented in Section 3.3. Besides, the 
well-known Debye length, denoted as 𝜆𝐷 , and the electron plasma frequency, represented by 𝜔𝑝, are defined as follows,

𝜆𝐷 =
(
𝜀𝑘𝐵𝑇

𝑞2𝑛 

)1∕2
, 𝜔𝑝 =

(
𝑛𝑞2

𝜀0𝑚𝑒

)1∕2
,

where 𝑘𝐵 is the Boltzmann constant, 𝑞 is elementary charge, 𝑛 is number density, and 𝑇 is temperature.

To facilitate a better understanding of the quasi-neutral limit in the VM system, we introduce the following dimensionless variables 
[16],

�̄� = 𝑥 
𝑥0

, �̄� = 𝑇

𝑇0
, �̄� = 𝑚 

𝑚0
, �̄� = 𝑛 

𝑛0
, �̄� = 𝑣 

𝑣0
,

𝑡 = 𝑡 
𝑡0
, 𝑓 = 𝑓

𝑓0
, �̄� = 𝑱

𝐽0
, �̄� = 𝑬

𝐸0
, �̄� = 𝑩

𝐵0
,

(4)

where 𝑥0, 𝑇0, 𝑚0, 𝑛0, are reference length, temperature, mass, and number density. By setting the reference velocity as 𝑣0 =
√
𝑘𝐵𝑇0∕𝑚0

and the magnetic field as 𝐵0 = 𝑚0𝑣0∕𝑞𝑥0, we can derive the reference time as 𝑡0 = 𝑥0∕𝑢0, the distribution function as 𝑓0 = 𝑛0∕𝑣0𝑑𝑣 , 
the total current density as 𝐽0 = 𝑞𝑛0𝑣0, and the electric field as 𝐸0 = 𝐵0𝑣0. Once the four parameters 𝑥0, 𝑇0, 𝑚0, and 𝑛0 are specified, 
the dimensionless VM system is uniquely determined.

In current study, we chose 𝑇0 = 𝑇𝑒, 𝑚0 =𝑚𝑒, 𝑛0 = 𝑛𝑒, unless specifically stated otherwise. The reference length 𝑥0 will be given in 
the specific simulation. The dimensionless Debye length is defined as 𝜆 = 𝜆𝐷∕𝑥0. In the rest of paper, all variables are dimensionless 
unless stated otherwise, but we will drop the bar over the variables for simplicity. Then the dimensionless VM system Eqs. (1) and 
(2) can be written as

𝜕𝑡𝑓𝑠 + 𝒗𝑠 ⋅∇𝒙𝑓𝑠 +
𝑞𝑠

𝑚𝑠

(
𝑬 + 𝒗𝑠 ×𝑩

)
⋅∇𝒗𝑠𝑓𝑠 = 0, (5)

𝜆2𝜕𝑡𝑬 − 𝜆2𝑐2∇ ×𝑩 = −𝑱 , (6)

𝜕𝑡𝑩 +∇×𝑬 = 0. (7)

Once the distribution function 𝑓𝑠 is known, the conservative variables 𝑾 𝑠 for species s can be obtained by

𝑾 𝑠 = (𝑛𝑠, 𝑛𝑠𝒖𝑠,𝐸𝑘𝑠)T = ∫
Ω𝑣

𝝍𝑓𝑠𝑑𝒗 , (8)

where Ω𝑣 represents the velocity domain, 𝝍 = (1,𝒗𝑠,𝒗2𝑠∕2)
T is the collision invariant, 𝒖𝑠 is the plasma velocity, and 𝐸𝑘𝑠 is the kinetic 

energy. Then the charge density 𝜌𝑠 and current density 𝑱 𝑠 for species s can be obtained from

(𝜌𝑠,𝑱 𝑠)T = 𝑞𝑠
(
𝑛𝑠, 𝑛𝑠𝒖𝑠

)T
. (9)

The total charge density 𝜌 and current density 𝑱 can be further given by
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(𝜌,𝑱 )T =
∑
𝑠 
(𝜌𝑠,𝑱 𝑠)T . (10)

2.2. The reformulated Vlasov Maxwell system

It is worth noting that in the quasi-neutral limit as 𝜆→ 0, the VM system (5), (6), and (7) cannot be directly used for numerical 
approximation, since the electric field 𝑬 could not be directly obtained from Ampère law (6). Specifically, in this limit, the displace-

ment current vanishes, and electromagnetic waves propagate at velocities much smaller than the speed of light [3], with 𝑐 → 1∕𝜆. 
As a result, Eq. (6) simplifies to 𝑱 =∇×𝑩, which implies ∇ ⋅ 𝑱 = 0. To address the degeneracy of the quasi-neutral limit, Degond et 
al. [3] proposed the reformulated VM system, which will be briefly introduced as follows.

Taking the first moment of the Vlasov equation (5) and multiplying the momentum equation by 𝑞𝑠 , we obtain the following 
relation for the current density, which can be viewed as a generalized Ohm’s law [52],

𝜕𝑡𝑱 = �̄�𝑬 + �̄� ×𝑩 −∇ ⋅ �̄� , (11)

where (�̄�, �̄� )T = 𝑞𝑠

𝑚𝑠

∑
𝑠 
(𝜌𝑠,𝑱 𝑠)T and �̄� = 𝑞𝑠

∑
𝑠 
∫ 𝒗𝒗𝑓𝑠𝑑𝒗𝑠. By combining Eq. (6) with the generalized Ohm’s law Eq. (11), we can derive 

the RME,

𝜆2𝜕2
𝑡
𝑬 + �̄�𝑬 + 𝜆2𝑐2∇ ×∇×𝑬 =∇ ⋅ �̄� − �̄� ×𝑩 . (12)

Consequently, the reformulated VM system is defined as follows,

𝜕𝑡𝑓𝑠 + 𝒗𝑠 ⋅∇𝒙𝑓𝑠 +
𝑞𝑠

𝑚𝑠

(
𝑬 + 𝒗𝑠 ×𝑩

)
⋅∇𝒗𝑠𝑓𝑠 = 0 , (13)

𝜆2𝜕2
𝑡
𝑬 + �̄�𝑬 + 𝜆2𝑐2∇ ×∇×𝑬 =∇ ⋅ �̄� − �̄� ×𝑩 , (14)

𝜕𝑡𝑩 +∇×𝑬 = 0 . (15)

The reformulated VM system, consisting of Eqs. (13), (14), and (15), is equivalent to the original VM system represented by 
Eqs. (5), (6), and (7) [3]. Importantly, the reformulated VM system retains the ability to provide solutions even in the quasi-neutral 
limit 𝜆→ 0. In this limit, Eq. (14) simplifies to the following form,

�̄�𝑬+∇×∇×𝑬 =∇ ⋅ �̄� − �̄� ×𝑩, (16)

where the electric field 𝑬 can be directly obtained. Combined Eq. (16) with the generalized Ohm’s law Eq. (11) and Faraday’s Law 
(15), it can be observed that 𝑱 =∇×𝑩, implying that the plasma is in a quasi-neutral state.

Obviously, the reformulated VM system (13), (14) and (15) provides a more straightforward way for the investigation of the 
quasi-neutral limit. Consequently, in the remaining part of this paper, we will develop the kinetic scheme based on the reformulated 
VM system (13), (14), and (15) rather than the VM system (5), (6), and (7). For the traditional explicit Eulerian scheme, the numerical 
time step is determined by Δ𝑡 =min(Δ𝑡𝑐 ,Δ𝑡𝜆), where Δ𝑡𝑐 represents the restriction imposed by the CFL condition, and Δ𝑡𝜆 represents 
the restriction imposed by the plasma period 𝑤−1

𝑝
(equivalent to the normalized Debye length 𝜆). Additionally, Δ𝑡𝑐 is further limited 

by the transport velocity 𝒗𝑠 and electromagnetic force 𝑞𝑠
𝑚𝑠

(𝑬 +𝒗𝑠 ×𝑩) in the Vlasov equation, as well as by the speed of light 𝑐 in the 
Maxwell equation. These constraints in Δ𝑡𝑐 can be overcome by employing the semi-Lagrangian method and an implicit field solver, 
as demonstrated in our previous study [16].

In the following section, we aim to develop an asymptotic-preserving conservative semi-Lagrangian scheme for the reformulated 
VM system (13), (14) and (15), which enables simultaneous and seamless simulation of the electromagnetic plasma in both non-

neutral regimes (𝜆 ∼𝑂(1)) and quasi-neutral regimes (𝜆→ 0), while avoiding limitations on the numerical time step induced by the 
CFL condition and the plasma period 𝜆.

3. Numerical methods

In this section, we will present the asymptotic-preserving conservative semi-Lagrangian scheme, named CSL-RME, which is based 
on the CSL and RME. The CSL-RME is designed for solving the reformulated VM system (13), (14), and (15). The proposed method 
involves several key steps, including the update rule for the reformulated VM system, the CSL scheme for Vlasov equation, and the 
electromagnetic field evaluation.

3.1. Update rule

In order to solve the multi-dimensional reformulated VM system, we firstly split Vlasov Eq. (13) as follows,

𝜕𝑡𝑓𝑠 + 𝒗𝑠 ⋅∇𝒙𝑓𝑠 = 0 , (17)

𝜕𝑡𝑓𝑠 +
𝑞𝑠

𝑚𝑠

(
𝑬 + 𝒗𝑠 ×𝑩

)
⋅∇𝒗𝑠𝑓𝑠 = 0 . (18)
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Moreover, to achieve second-order accuracy in time, Eq. (13) can be discretized using the Strang splitting method. This involves 
solving Eq. (17) for a half time step, followed by solving Eq. (18) for a full time step, and finally solving Eq. (17) for a second half 
time step. Specifically, the numerical update from 𝑓𝑘

𝑠
(𝒙,𝒗) (the solution at 𝑡𝑘 = 𝑘Δ𝑡) to 𝑓𝑘+1

𝑠
(𝒙,𝒗) can be expressed as follows,

𝑓 ∗
𝑠
(𝒙,𝒗) = 𝑓𝑘

𝑠
(𝒙− 𝜃Δ𝑡𝒗,𝒗) , (19)

𝑓 ∗∗
𝑠

(𝒙,𝒗) = 𝑓 ∗
𝑠

(
𝒙,𝒗−

𝑞𝑠

𝑚𝑠

(
𝑬𝑘+𝜃 + 𝒗 ×𝑩𝑘+𝜃)Δ𝑡) , (20)

𝑓𝑘+1
𝑠

(𝒙,𝒗) = 𝑓 ∗∗
𝑠

(𝒙− (1 − 𝜃)Δ𝑡𝒗,𝒗) , (21)

which maintain second-order temporal accuracy when 𝜃 = 1∕2. Eqs. (19) and (21) describe plasma transport in physics space and can 
be exactly solved using Lie splitting operators in each dimension, while Eq. (20) does not possess the same property due to the non-

commutativity of the splitting operators in velocity space, resulting from the presence of the magnetic field. If second-order temporal 
accuracy for the entire system is desired, the Strang splitting method can be employed once again for Eq. (20). Alternatively, other 
methods can be used [33,53,54]. Then the multi-dimensional Vlasov Eq. (13) is reduced to a succession of one-dimensional problems. 
This choice not only provides more alternative methods to solve Vlasov Eq. (13), but also makes the multi-dimensional simulation to 
be more practical.

Besides, electric field Eq. (14) is discretized as follows,

𝜆2

𝜃2Δ𝑡2
(
𝑬𝑘+𝜃

𝑗
− 2𝑬𝑘

𝑗
+𝑬𝑘−𝜃

𝑗

)
+ �̄�𝑘

𝑗
𝑬𝑘+𝜃

𝑗
+ 𝜆2𝑐2∇ ×∇×𝑬𝑘+𝜃

𝑗
=∇ ⋅ �̄� 𝑘

𝑗
− �̄� 𝑘+𝜃

𝑗
×𝑩𝑘

𝑗
, (22)

where second-order temporal derivative of the electric field is discretized using a central differencing scheme, and the implicit electric 
field 𝑬𝑘+𝜃 and current density �̄� 𝑘+𝜃

with 𝜃 ≥ 1∕2 are used to eliminate the strict numerical stability constraints related to the fastest 
electron response time, i.e., the electron plasma period 𝜆.

Once 𝑬𝑘+𝜃 is known, the magnetic field can be obtained using Faraday’s equation (15) as follows:

𝑩𝑘+1 =𝑩𝑘 −Δ𝑡∇×𝑬𝑘+𝜃. (23)

Now, the key is to determine the time evolution of the velocity distribution function 𝑓𝑘+1
𝑠

(𝒙,𝒗), as well as the electromagnetic fields 
𝑬𝑘+𝜃 and 𝑩𝑘+𝜃 .

3.2. Conservative semi-Lagrangian scheme

In this section, we present the method to solve the kinetic transport equations (19), (20), and (21) by expressing them in the 
following unified form:

𝜕𝑡𝑓𝑠 + 𝜕𝑥
(
𝑎𝑓𝑠

)
= 0. (24)

In the Eqs. (19) and (21), 𝑎 represents the discrete velocity 𝒗, while in Eq. (20), it represents the electromagnetic force 𝑞𝑠
𝑚𝑠

(𝑬 + 𝒗𝑠 ×𝑩). 
The linear hyperbolic Eq. (24) enables the implementation of a conservative scheme based on the characteristics lines. To solve 
Eq. (24), we employ the CSL scheme [16,24], a positive flux-conservative (PFC) approach that conserves mass while accurately 
tracking particle trajectories over time. For completeness, we summarize the key aspects of the CSL scheme below:

First, we introduce a set of mesh points 
{
𝑥𝑗+1∕2

}
𝐼𝑗

that span the computational domain [𝑥min, 𝑥max]. Each mesh point is associated 

with a uniform numerical cell 𝐼𝑗 = [𝑥𝑗−1∕2, 𝑥𝑗+1∕2] centered at 𝑥𝑗 =
(
𝑥𝑗−1∕2 + 𝑥𝑗+1∕2

)
∕2, with a cell size of Δ𝑥𝑗 = 𝑥𝑗+1∕2 − 𝑥𝑗−1∕2. 

We use 𝑓𝑘
𝑗
= 1 

Δ𝑥 ∫
𝑥𝑗+1∕2
𝑥𝑗−1∕2

𝑓 (𝑥, 𝑡𝑘)𝑑𝑥 to represent the cell average of the solution within the cell 𝐼𝑗 . By tracing the characteristic lines 
backwards, starting from the cell [𝑥𝑗−1∕2, 𝑥𝑗+1∕2], we can determine the upstream cell as [𝑥𝑗−1∕2 − 𝑎Δ𝑡, 𝑥𝑗+1∕2 − 𝑎Δ𝑡], denoted as 
[𝑥∗

𝑗−1∕2, 𝑥𝑗+1∕2
∗]. Utilizing the conservation property of Eq. (24), we obtain the following relationship,

𝑥𝑗+1∕2

∫
𝑥𝑗−1∕2

𝑓 (𝑥, 𝑡𝑘+1)𝑑𝑥 =

𝑥∗
𝑗+1∕2

∫
𝑥∗
𝑗−1∕2

𝑓 (𝑥, 𝑡𝑘)𝑑𝑥 ,

which can be rewritten in the following flux form,

𝑓𝑘+1
𝑗

= 𝑓𝑘
𝑗
+ 𝐹𝑗−1∕2 − 𝐹𝑗+1∕2 , (25)

where 𝐹𝑗−1∕2 =
1 
Δ𝑥 ∫

𝑥𝑗−1∕2
𝑥𝑗−1∕2−𝑎Δ𝑡

𝑓𝑘𝑑𝑥 and 𝐹𝑗+1∕2 =
1 
Δ𝑥 ∫

𝑥𝑗+1∕2
𝑥𝑗+1∕2−𝑎Δ𝑡

𝑓𝑘𝑑𝑥.

Then we present the flux 𝐹𝑗+1∕2 in the third order scheme in the case of 𝜑 < 1 and 𝑎 > 0 [24],

𝐹𝑗+1∕2=
(
𝑓𝑘
𝑗
+ 1

6
(2 − |𝜑|) (1 − |𝜑|)(𝑓𝑘

𝑗+1 − 𝑓𝑘
𝑗

)
+ 1

6
(1 − |𝜑|) (1 + |𝜑|)(𝑓𝑘

𝑗
− 𝑓𝑘

𝑗−1

))
𝜑 , (26)
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where 𝜑 = 𝑎Δ𝑡∕Δ𝑥 is related to CFL condition. Note that when 𝑎 ≤ 0, the procedure described above exhibits mirror symmetry with 
respect to 𝑥𝑗 . Additionally, for 𝜑 ≥ 1, the case can be handled by performing whole grids shift, followed by considering the cases 
where 𝜑 < 1.

To preserve the positivity of the distribution function and maintain the high-order accuracy, we adopt a general high-order 
parametrized positivity-preserving (PP) limiter in [18]. The key ingredient is to modify the high order numerical flux towards the 
first order monotone flux as follows,

𝐹𝑗+1∕2 = 𝜀𝑗+1∕2
(
𝐹𝑗+1∕2 − 𝑓𝑗+1∕2

)
+ 𝑓𝑗+1∕2 , (27)

where 𝑓𝑗+1∕2 = 𝜑𝑓𝑘
𝑗

is the first order flux, and 𝜀𝑗+1∕2 ∈ [0,1] is the positivity-preserving limiter to ensure the positivity of the function 
𝑓𝑘+1
𝑗

in Eq. (25). Further details on deriving 𝜀𝑗+1∕2 can be found in [16,18].

Finally, we replace the flux 𝐹𝑗±1∕2 in Eq. (25) with the modified flux 𝐹𝑗±1∕2 in Eq. (27). As a result, the distribution function 𝑓𝑘+1
𝑗

is updated by

𝑓𝑘+1
𝑗

= 𝑓𝑘
𝑗
+ 𝐹𝑗−1∕2 − 𝐹𝑗+1∕2 , (28)

By incorporating the third-order PFC scheme [24] and the general high-order PP limiter [18] into the current CSL scheme, we 
achieve exact preservation of mass and positivity of the distribution function with third-order spatial accuracy [16]. Additionally, 
the current CSL scheme eliminates the CFL restriction, allowing for larger time steps while maintaining accuracy.

3.3. Electromagnetic field evaluation

In this section, we discretize Eq. (22) to evaluate the electric field 𝑬𝑘+𝜃
𝑗

within the physics cell 𝑗. It is evident that Eq. (22) 
represents a second-order partial differential equation in time. To eliminate the presence of the electric field 𝑬𝑘−𝜃

𝑗
in Eq. (22), we 

take into account the Ampère’s law, which can be expressed as follows,

𝜆2𝑐2∇ ×𝑩𝑘
𝑗
− 𝑱 𝑘

𝑗
= 𝜆2

𝜃Δ𝑡

(
𝑬𝑘

𝑗
−𝑬𝑘−𝜃

𝑗

)
. (29)

By substituting Eq. (29) into Eq. (22), we can obtain

𝜆2

Δ𝑡2
𝑬𝑘+𝜃

𝑗
+ 𝜆2𝑐2𝜃2∇ ×∇×𝑬𝑘+𝜃

𝑗
= 𝜆2

Δ𝑡2
𝑬𝑘

𝑗
+ 𝜆2𝑐2𝜃

Δ𝑡 
∇×𝑩𝑘

𝑗
− 𝜃

Δ𝑡
𝑱 𝑘+𝜃
𝑗

, (30)

where 𝑱 𝑘+𝜃
𝑗

represents the total current density at time 𝑡𝑘+𝜃 , and it is defined as,

𝑱 𝑘+𝜃
𝑗

= 𝑱 𝑘
𝑗
+ 𝜃Δ𝑡

(
�̄�𝑘
𝑗
𝑬𝑘+𝜃

𝑗
+ �̄� 𝑘+𝜃

𝑗
×𝑩𝑘

𝑗
−∇ ⋅ �̄� 𝑘

𝑗

)
. (31)

Similar to Eq. (31), the current density 𝑱 𝑘+𝜃
𝑠,𝑗

for each species 𝑠 at 𝑡𝑘+𝜃 can be expressed as,

𝑱 𝑘+𝜃
𝑠,𝑗

= 𝑱 𝑘∗
𝑠,𝑗

+
𝑞𝑠𝜃Δ𝑡
𝑚𝑠

(
𝜌𝑘
𝑠,𝑗
𝑬𝑘+𝜃

𝑗
+ 𝑱 𝑘+𝜃

𝑠,𝑗
×𝑩𝑘

𝑗

)
, (32)

where

𝑱 𝑘∗
𝑠,𝑗

= 𝑱 𝑘
𝑠,𝑗

− 𝜃Δ𝑡∇ ⋅ 𝑷 𝑘
𝑠,𝑗

. (33)

In practical computations, when considering the transport Eq. (19) in physics space, we can further rewrite Eq. (33) as 𝑱 𝑘∗
𝑠,𝑗

=
∫Ω𝑣

𝒗𝑠𝑓
∗
𝑠,𝑗
𝑑𝒗. This formulation avoids the computation of the pressure tensor 𝑷 𝑘

𝑠,𝑗
[16]. Note that 𝑱 𝑘

𝑠,𝑗
represents the current density 

at the beginning of plasma transport in physics space in Eq. (19), while 𝑱 𝑘∗
𝑠,𝑗

represents it at the end of this transport process.

By explicitly expressing the current density 𝑱 𝑘+𝜃
𝑠,𝑗

for each species 𝑠 in Eq. (32), we can represent the total current density 𝑱 𝑘+𝜃
𝑗

in 
Eq. (31) as follows,

𝑱 𝑘+𝜃
𝑗

= �̂� 𝑘+𝜃
𝑗

+ 𝜃Δ𝑡𝝁𝑘
𝑗
⋅𝑬𝑘+𝜃

𝑗
, (34)

where

�̂�
𝑘+𝜃
𝑗

=
∑
𝑠 
𝜶𝑘
𝑠,𝑗

⋅ 𝑱 𝑘∗
𝑠,𝑗
, (35)

𝝁𝑘
𝑗
=
∑
𝑠 

𝑞𝑠𝜌
𝑘
𝑠,𝑗

𝑚𝑠

𝜶𝑘
𝑠,𝑗
. (36)

Here, the effective dielectric tensor 𝝁𝑘
𝑗

accounts for the feedback of the electric field on the plasma current and density [2]. On the 
other hand, the transformation tensor operator 𝜶𝑘

𝑠,𝑗
represents a rotation of the current density and is defined as follows,
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𝜶𝑘
𝑠,𝑗

= 1 
1 + (𝜀𝑠𝑩𝑘

𝑗
)2
(𝑰 − 𝜀𝑠𝑰 ×𝑩𝑘

𝑗
+ 𝜀2

𝑠
𝑩𝑘

𝑗
𝑩𝑘

𝑗
), (37)

where 𝑰 is the identity matrix and 𝜀𝑠 = 𝑞𝑠𝜃Δ𝑡∕𝑚𝑠. Unlike the method in Degond et al. [3], where Eq. (32) explicitly uses 𝑱 𝑘
𝑠,𝑗

×𝑩𝑘
𝑗

on the right-hand side, we adopt a semi-implicit approach by employing 𝑱 𝑘+𝜃
𝑠,𝑗

×𝑩𝑘
𝑗
, which introduces the rotation matrix 𝜶𝑘

𝑠,𝑗
(37). 

Although this makes the current method slightly more complex, it enhances stability in the presence of strong magnetic fields, as 
demonstrated by the iPic3D method [2].

Note that Eq. (34) represents the source term of the Maxwell equation, which couples particle motion and electromagnetic field 
evolution. This formulation allows the current field solver to consider both the stability of the implicit method (where the numerical 
time step is not limited by 𝜆) and the efficiency of the explicit method (where there is no need to iteratively solve nonlinear equations). 
In Eq. (34), �̂� 𝑘+𝜃

𝑗
represents the transformed current flux under the constraint of the magnetic field.

Substituting Eq. (34) into Eq. (30), we obtain the expression for 𝑬𝑘+𝜃
𝑗

as follows,

𝜆2

Δ𝑡2
𝑬𝑘+𝜃

𝑗
+ 𝜃2𝝁𝑘 ⋅𝑬𝑘+𝜃

𝑗
+ 𝜆2𝑐2𝜃2∇ ×∇×𝑬𝑘+𝜃

𝑗
= 𝜆2

Δ𝑡2
𝑬𝑘

𝑗
+ 𝜆2𝑐2𝜃

Δ𝑡 
∇×𝑩𝑘

𝑗
− 𝜃

Δ𝑡
�̂�
𝑘+𝜃
𝑗

. (38)

The expression 𝜃2𝝁𝑘
𝑗
⋅𝑬𝑘+𝜃

𝑗
in Eq. (38), resulting from the final term in Eq. (34), represents a combination of scaling and rotational 

transformations on the future value of the electric field. When fast plasma oscillation periods cannot be resolved due to a large time 
step (i.e., 𝜆 <Δ𝑡), this term becomes dominant and effectively suppresses the rapid growth of the electric field.

Once 𝑬𝑘+𝜃
𝑗

is provided, the magnetic field 𝑩𝑘+1
𝑗

can be determined by using Eq. (23). Subsequently, we obtain the magnetic field 
𝑩𝑘+𝜃

𝑗
,

𝑩𝑘+𝜃
𝑗

= 𝜃𝑩𝑘+1
𝑗

+ (1 − 𝜃)𝑩𝑘
𝑗
, (39)

and the electric field 𝑬𝑘+1
𝑗

,

𝑬𝑘+1
𝑗

=
(
𝑬𝑘+𝜃

𝑗
−𝑬𝑘

𝑗

)
∕𝜃 +𝑬𝑘

𝑗
, (40)

After solving the field equation, in order to avoid the generation of non-physics charge separation in the electric field 𝑬𝑘+1
𝑗

, a 
correction of electric field, namely Boris correction [3,51], is employed to enforce the Gauss’s Law [2,3],

�̃�
𝑘+1
𝑗

=𝑬𝑘+1
𝑗

−∇𝜙𝑘+1
𝑗

, (41)

where �̃�𝑘+1
𝑗

is the corrected electric field, and 𝜙𝑘+1
𝑗

denotes the electric potential to be determined. Additionally, Gauss’s law is 
considered and given by,

𝜆2∇ ⋅ �̃�𝑘+1
𝑗

= �̃�𝑘+1
𝑗

, (42)

where �̃�𝑘+1
𝑗

= 𝜌𝑘
𝑗
+ Δ𝑡∇ ⋅ �̃� 𝑘+1

𝑗
is obtained from the continuity equation. Similar to Eq. (34), we can determine that �̃� 𝑘+1

𝑗
= �̂� 𝑘+1

𝑗
+

Δ𝑡𝝁𝑘
𝑗
⋅ �̃�𝑘+1

𝑗
. Therefore, by combining Eqs. (41) and (42), we can derive the electric potential 𝜙𝑘+1

𝑗
as follows,

−∇ ⋅
[(

𝜆2

Δ𝑡2
𝑰 + 𝝁𝑘

𝑗

)
⋅∇𝜙𝑘+1

𝑗

]
=

𝜌𝑘
𝑗

Δ𝑡2
− ∇ ⋅

[(
𝜆2

Δ𝑡2
𝑰 + 𝝁𝑘

𝑗

)
⋅𝑬𝑘+1

]
− 1 

Δ𝑡
∇ ⋅ �̂�

𝑘+1
𝑗

. (43)

Additionally, taking Ampère’s law into consideration, we have,

𝜆2
(
𝑬𝑘+1

𝑗
−𝑬𝑘

𝑗
−Δ𝑡𝑐2∇ ×𝑩𝑘+1

𝑗

)
= −Δ𝑡𝑱 𝑘+1

𝑗
. (44)

By combining Eq. (34) and taking the divergence of both sides of Eq. (44), while considering the condition ∇ ⋅
(
∇×𝑩

)
= 0, Eq. (43) 

can be simplified as follows,

−∇ ⋅
[(

𝜆2𝑰 +Δ𝑡2𝝁𝑘
𝑗

)
⋅∇𝜙𝑘+1

𝑗

]
= 𝜌𝑘

𝑗
− 𝜆2∇ ⋅𝑬𝑘

𝑗
. (45)

The right-hand side of Eq. (45) represents the difference between the charge density 𝜌𝑘
𝑗

and the electric field 𝑬𝑘
𝑗

obtained from 
the field solver, which is used to assess the inconsistency of Gauss’s law. The primary objective of Eq. (45) is to gradually eliminate 
this inconsistency and suppress non-physics charge separation as the evolution progresses [2,3]. In practical computations, when 
considering Gauss’s law correction, Eq. (45) is utilized to determine the corrected potential 𝜙𝑘+1

𝑗
, and Eq. (41) is used to obtain the 

corrected electric field �̃�𝑘+1
𝑗

. Finally, the electric field is updated by assigning 𝑬𝑘+1
𝑗

= �̃�𝑘+1
𝑗

.

By employing Eq. (38), the electric field 𝑬𝑘+𝜃
𝑗

is solved to ensure that the numerical time step in the current CSL-RME is not 
limited by normalized Debye length 𝜆. Furthermore, Eq. (45) is used to correct the electric field 𝑬𝑘+1

𝑗
in order to satisfy Gauss’s law, 

providing a more reasonable solution.
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3.4. Algorithm

To provide a clearer understanding of the proposed CSL-RME, we present its evolution procedure. The method evolves from the 
initial distribution function 𝑓𝑘

𝑠
and electromagnetic field 𝑬𝑘 and 𝑩𝑘, progressing from time 𝑡𝑘 to 𝑡𝑘+1 through the following steps:

(1) Calculate function 𝑓 ∗
𝑠

from 𝑓𝑘
𝑠

by solving Eq. (19) with Lie Splitting in physics space for Δ𝑡∕2. 
(a) Compute the flux according to Eq. (26) in each physics direction;

(b) Correct the flux with parametrized PP limiter by Eq. (27) in each physics direction;

(c) Obtain function 𝑓 ∗
𝑠

Eq. (28) in each physics direction.

(2) Update the electromagnetic field with a time step Δ𝑡.

(a) Obtain the current density �̂� 𝑘+𝜃
𝑗

and the dielectric tensor 𝝁𝑘
𝑗

using Eqs. (35) and (36), respectively.

(b) Solve Eq. (38) to obtain the electric field 𝑬𝑘+𝜃
𝑗

, and update the electric field 𝑬𝑘+1
𝑗

with Eq. (40);

(c) Update the magnetic field 𝑩𝑘+1
𝑗

using Eq. (23), and calculate 𝑩𝑘+𝜃
𝑗

using Eq. (39);

(d) If Gauss’s law is enforced, the electric field �̃�𝑘+1
𝑗

is corrected using Eq. (41), and update the electric field 𝑬𝑘+1
𝑗

= �̃�𝑘+1
𝑗

, 
where the corrected electric potential 𝜙𝑘+1

𝑗
is obtained from Eq. (45).

(3) Update 𝑓 ∗∗
𝑠

by solving Eq. (20) with Strang Splitting in velocity space for Δ𝑡.
(4) Update 𝑓𝑘+1

𝑠
by solving Eq. (21) with Lie Splitting in physics space for Δ𝑡∕2.

It is worth noting that the process of steps (3) and (4) in each dimension is similar to that of step (1), and they are omitted here for 
the sake of presentation simplicity. If Gauss’s law is not enforced, step (2)(d) can be skipped. We employ the finite element method 
[55] along with the GMRES solver to solve the linear system described in Eq. (38). Specifically, a third-order spatial accuracy finite 
element field solver is employed in this paper, and the computational procedure, along with the treatment of boundary conditions, is 
detailed in [16]. Although any value 𝜃 ≥ 1∕2 can be chosen, unless otherwise specified, the parameter 𝜃 will be set to 1∕2 in current 
paper.

4. Analysis of CSL-RME

In this section, we will discuss three important aspects on the proposed CSL-RME: asymptotic-preserving (AP) property in the 
quasi-neutral limit, the behavior in the electrostatic regime, and the comparison with other kinetic methods in plasma simulations.

4.1. AP property in the quasi-neutral limit

First, we demonstrate that the proposed CSL-RME preserves the AP property in the quasi-neutral limit as 𝜆 → 0. As stated in 
Ref. [3,40], a kinetic scheme is considered AP if it satisfies (a) it is consistent with 𝑆𝜀 when the numerical parameters (such as Δ𝑥
and Δ𝑡) resolve the scales associated with 𝜀; (b) it is consistent with 𝑆0 when 𝜀→ 0, and the choice of Δ𝑥 and Δ𝑡 is not restricted by 
𝜀. In this paper, 𝑆𝜀 is the reformulated VM system (13), (14) and (15), while 𝑆0 is the system dependent on 𝜆. It is not difficult to 
verify that the proposed CSL-RME satisfies condition (a), since it was derived from the reformulated VM system. The main task is to 
verify whether the scheme satisfies condition (b) or not.

If the initial conditions satisfy quasi-neutrality, i.e., 𝜌0 = 0 and 𝑱 0 = ∇×𝑩0, in the quasi-neutral limit 𝜆→ 0, the evolution equation 
for the electric field Eq. (38) can be expressed as

𝜃Δ𝑡𝝁𝑘
𝑗
⋅𝑬𝑘+𝜃

𝑗
+𝜃Δ𝑡∇×∇×𝑬𝑘+𝜃

𝑗
=∇×𝑩𝑘

𝑗
− �̂� 𝑘+𝜃

𝑗
, (46)

Taking into consideration Eq. (31) and Eq. (34), along with the relationship 𝑱 𝑘
𝑗
= ∇ × 𝑩𝑘

𝑗
, the expression for the electric field in 

Eq. (46) can be further simplified as follows:

�̄�𝑘
𝑗
𝑬𝑘+𝜃

𝑗
+∇×∇×𝑬𝑘+𝜃

𝑗
=∇ ⋅ �̄� 𝑘

𝑗
− �̄� 𝑘+𝜃

𝑗
×𝑩𝑘

𝑗
, (47)

which represents the consistent discretization format of the quasi-neutral limit Eq. (16). Encouragingly, Eq. (38) couples particle 
motion and electromagnetic field evolution in a semi-implicit way, the numerical time step of the current CSL-RME is not limited by 
𝜆.

The above analysis demonstrates that in the quasi-neutral limit as 𝜆→ 0, the proposed CSL-RME can automatically degenerate to 
a discretization format consistent with the quasi-neutral system. Moreover, the numerical parameters Δ𝑥 and Δ𝑡 are not limited by 𝜆. 
This means that CSL-RME satisfies condition (b). Therefore, the proposed CSL-RME preserves the AP properties in the quasi-neutral 
limit, which will be verified in numerical experiments in Section 5.3.

4.2. The behavior in the electrostatic regime

Second, we will discuss the behavior of CSL-RME in the electrostatic regime, characterized by a vanishing magnetic field. In the 
reformulated VM system (13), (14), and (15), this corresponds to 𝑐−1 → 0. In the electrostatic regime, the magnetic field vanishes, 
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resulting in ∇×𝑩 = 0 and ∇ ⋅𝑩 = 0. Additionally, if there is no magnetic field source at the boundary, we have 𝜕𝑡𝑩 = 0. Consequently, 
the Faraday’s law Eq. (15) simplifies to ∇×𝑬 = 0. Thus, electric field Eq. (38) reduces to,

𝜆2

Δ𝑡2
𝑬𝑘+𝜃

𝑗
+ 𝜃2𝝁𝑘 ⋅𝑬𝑘+𝜃

𝑗
= 𝜆2

Δ𝑡2
𝑬𝑘

𝑗
− 𝜃

Δ𝑡
�̂�
𝑘+𝜃
𝑗

. (48)

For convenience, we consider 𝜃 = 1. It should be noted that Eq. (48) just satisfies Ampère’s law. To accurately recover the electrostatic 
regime, we need to consider Gauss’s correction. By combining Eq. (48) with the Gauss-corrected electric potential (45), we obtain,

∇ ⋅
[(

𝜆2𝑰 +Δ𝑡2𝝁𝑘
𝑗

)
⋅∇�̃�𝑘+1

𝑗

]
= 𝜌𝑘

𝑗
−Δ𝑡∇ ⋅ �̂�

𝑘+1
𝑗

(49)

where ∇�̃� =∇𝜙−𝑬. When the magnetic field is zero, the rotation matrix 𝜶𝑘
𝑠,𝑗

= 𝑰 in Eqs. (35) and (36). Therefore, Eq. (49) represents 
the consistent discretization format of the reformulated Poisson equation in [27].

This analysis indicates that in the absence of a magnetic field, the current CSL-RME, with the Gauss’s correction Eq. (45), can 
automatically revert to a discretization format consistent with the electrostatic system. This will be verified in numerical experiments 
in Section 5.1.

4.3. Comparison with other kinetic methods

Finally, we discuss some differences between the current CSL-RME and other kinetic methods, especially the implicit methods, 
in plasma simulations. Implicit methods have been widely used in the Particle-in-Cell (PIC) method but have received less attention 
in the grid-based method. Here, we focus on comparing the CSL-RME with the AP-PIC method. It’s worth noting that the differences 
between the AP-PIC method and other implicit PIC methods, such as the full implicit method [56,57], implicit moment method [2,6], 
and direct implicit method [58,59], have been systematically addressed in Ref [3].

On the one hand, CSL-RME and AP-PIC share some similarities. Similar to the implicit moment method [2,6], both the CSL-RME and 
AP-PIC employ macroscopic moment equations of the Vlasov equation to predict the sources of the field equations, providing a direct 
and explicit closure of Maxwell’s equations. This approach significantly reduces the computational cost compared to fully implicit 
methods that require nonlinear iterations, while still maintaining favorable stability properties. However, there are differences in 
their objectives. While the implicit moment method aims to relax stability conditions, the CSL-RME and AP-PIC strive to be consistent 
with a well-defined quasi-neutral model and preserve the AP property. The elimination of stability conditions related to the plasma 
period is a consequence of scaling assumptions made in Section 2.2 to define the quasi-neutral limit, along with the implicit treatment 
of the electric field and current density in the reformulated VM system.

On the other hand, although CSL-RME and AP-PIC seek the same ends, they differ fundamentally in their approach. CSL-RME is 
a grid-based kinetic method, while AP-PIC is a particle-based method. As studied in Ref [8], the grid-based method is advantageous 
in terms of being free from numerical noise, which is particularly beneficial for exploring micro-scale physics and unsteady plasma 
dynamics, such as plasma waves and plasma turbulence. Additionally, in AP-PIC, only the electric field is implicit in the moment 
equation, specifically the general Ohm’s law. In contrast, both the current density in the Hall term �̄� 𝑘+𝜃

𝑗
×𝑩𝑘

𝑗
and the electric field 

are implicit in CSL-RME. This leads to the formation of the effective dielectric tensor 𝝁𝑘
𝑗

in Eq. (36), which accounts for the feedback 
of the electromagnetic field on the plasma current and density [2].

5. Numerical experiments

In this section, we conduct four numerical experiments to validate the proposed CSL-RME, including linear Landau damping 
(1d2v), Weibel instability (1d2v), plasma opening switch (1d2v), and magnetic reconnection (2d3v). In the first two numerical 
experiments, only electrons dynamics (assume ions form a uniform static background) are considered, while both electrons and ions 
dynamics are considered in the last two experiments. For the purpose of comparison, we also present a discretization of the Maxwell 
equations employed in the traditional explicit kinetic method [16],

𝜆2

Δ𝑡2
𝑬𝑘+𝜃

𝑗
+ 𝜆2𝑐2𝜃2∇ ×∇×𝑬𝑘+𝜃

𝑗
= 𝜆2

Δ𝑡2
𝑬𝑘

𝑗
+ 𝜆2𝑐2𝜃

Δ𝑡 
∇×𝑩𝑘

𝑗
− 𝜃

Δ𝑡
𝑱
𝑘+𝜃,∗
𝑗

, (50)

where 𝑱 𝑘+𝜃,∗
𝑗

= 𝑱 𝑘∗
𝑗

+ 𝜃Δ𝑡
(
�̄�𝑘
𝑗
+ �̄� 𝑘

𝑗
×𝑩𝑘

𝑗

)
. For convenience, in the following we will use the term ‘CSL-RME’ to refer to the scheme 

used for the reformulated VM system, consisting of Eqs. (13), (14), and (15). On the other hand, we will use ‘CSL-ME’ to denote 
the scheme used for the original VM system, which includes Eqs. (5), (6), and (7). Note that the CSL-ME follows a similar evolution 
procedure to CSL-RME, as described in Section 4.3, except that the electric field is obtained using Eq. (50) instead of Eq. (38).

Furthermore, we mention that the time step Δ𝑡 in CSL-ME should be chosen to resolve the plasma period 𝑤−1
𝑝

, which is equivalent 
to the value of the normalized Debye length 𝜆. It is worth noting that in this paper, the proposed kinetic method specifically refers 
to CSL-RME, while CSL-ME is used for comparison purposes. For the sake of clarity, we specify the specific version of the original 
VM system (5), (6), and (7) used for each problem. The conversion from Eq. (6) to Eq. (50) or Eq. (38) is straightforward, and we 
omit the details here. Unless explicitly mentioned, all simulations assume periodic boundary conditions for the velocity distribution 
functions in velocity space, and the parameter 𝜃 is set to 1∕2.
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Fig. 1. Linear damping: 𝐶 = 1. Time evolution of electric field energy E𝐸𝑥
for Landau damping with 𝜃 = 1∕2 (a) and 𝜃 = 1 (b). 

Table 1
The 𝐿2 error and convergence order in space for Landau damping with Δ𝑡= 0.5(Δ𝑥∕𝑣𝑥𝑚 )

3∕2 .

𝑉 𝑁 = 83 𝑁 = 163 𝑁 = 323 𝑁 = 643

𝐿2 error Order 𝐿2 error Order 𝐿2 error Order 𝐿2 error Order 
𝑓 1.07×10−2 — 1.35×10−3 2.98 1.58×10−4 3.09 1.89×10−5 3.06 
𝐸𝑥 1.06×10−2 — 1.29×10−3 3.03 1.52×10−4 3.08 1.68×10−5 3.17 

5.1. Landau damping

In this subsection, the classical linear Landau damping is utilized to validate the CSL-RME scheme with two main purposes. Firstly, 
we investigate whether the solution of CSL-RME in the electrostatic regime is consistent with that of the electrostatic model. Secondly, 
we examine the accuracy of CSL-RME.

Considering the problem with 1-D physics space and 2-D velocity space (1d2v), where the electric field components are denoted 
as 𝐸𝑥 and 𝐸𝑦, and the magnetic field component is denoted as 𝐵𝑧, the VM system can be simplified as follows,

𝜕𝑡𝑓𝑠 + 𝑣𝑥𝜕𝑥𝑓𝑠 +
𝑞𝑠

𝑚𝑠

(
𝐸𝑥 + 𝑣𝑦𝐵𝑧

)
𝜕𝑣𝑥

𝑓𝑠 +
𝑞𝑠

𝑚𝑠

(
𝐸𝑦 − 𝑣𝑥𝐵𝑧

)
𝜕𝑣𝑦

𝑓𝑠 = 0,

𝜆2𝜕𝑡𝐸𝑥 = −𝐽𝑥, 𝜆2𝜕𝑡𝐸𝑦 = −𝜆2𝑐2𝜕𝑥𝐵𝑧 − 𝐽𝑦, 𝜕𝑡𝐵𝑧 = −𝜕𝑥𝐸𝑦.

(51)

As in [54], we assume ions are uniformly in the background, and only consider the electrons dynamics, and the initial velocity 
distribution function of electrons follows,

𝑓𝑒(𝑥, 𝑣𝑥, 𝑣𝑦,0) =
1 
𝜋𝛽

exp
[
−
(
𝑣2
𝑥
+ 𝑣2

𝑦

)
∕𝛽

](
1 + 𝛼0 sin(𝑘𝑥)

)
.

The initial electric field 𝐸𝑥 is solved by the Poisson equation, and the initial electric field 𝐸𝑦 and magnetic field 𝐵𝑧 are set to zero,

𝜆2𝐸𝑥 (𝑥,0) = 1 − 𝑛𝑒, 𝐸𝑦 (𝑥,0) = 0, 𝐵𝑧 (𝑥,0) = 0 .

In our simulations, we set 𝛼0 = 0.01, 𝑘 = 1, 𝛽 = 2, 𝜆 = 1, and 𝑐 = 1. The phase space is defined as [0,𝐿𝑥]× [−𝑣𝑥𝑚 , 𝑣𝑥𝑚 ]× [−𝑣𝑦𝑚 , 𝑣𝑦𝑚 ], 
with grids 𝑁 = 𝑁𝑥 ×𝑁𝑣𝑥

×𝑁𝑣𝑦
, where 𝐿𝑥 = 2𝜋∕𝑘, 𝑁𝑥 = 64, 𝑣𝑥𝑚 = 𝑣𝑦𝑚

= 6, and 𝑁𝑣𝑥
= 𝑁𝑣𝑦

= 64. The time stepping size is Δ𝑡 =
𝐶Δ𝑥∕𝑣𝑥𝑚 , where the CFL number 𝐶 = 1. The boundary conditions of the physics space are periodic.

Fig. 1 presents the time evolution of the electric energy E𝐸𝑥
, where E𝐸𝑥

= 1
2 ∫ |𝐸𝑥|2𝑑𝑥. In the figure, the black dotted line 

represents the theoretical decay line with a slope of 𝛾 = −0.85 [52]. CSL-PE denotes the reference solution obtained by solving for 
𝐸𝑥 using the Poisson equation, while setting 𝐸𝑦 and 𝐵𝑧 to zero. CSL-RME-WO and CSL-RME-WG are numerical solutions obtained 
using CSL-RME without and with the Gauss correction given by Eq. (45), respectively. In Fig. 1 (a), for 𝜃 = 1∕2, it can be observed 
that after 𝑡 > 8, the electric energy predicted by CSL-RME-WO deviates from the CSL-PE solution. This deviation occurs due to the 
violation of Gauss’s law, leading to non-physics charge separation. When 𝜃 = 1 as shown in Fig. 1 (b), the deviation becomes more 
pronounced. This is because now the numerical time step in the physics space is twice that of 𝜃 = 1∕2, which worsens the satisfaction 
of the continuity equation and leads to a poorer approximation of Gauss’s law. Encouragingly, CSL-RME-WG with 𝜃 = 1∕2 or 𝜃 = 1
provides results consistent with CSL-PE solutions, thanks to incorporating the electric correction to enforce Gauss’s law. The results 
in Fig. 1 highlight the necessity of the Gauss Law correction in the electrostatic regime. Hence, in the following subsections, unless 
otherwise specified, CSL-RME refers to CSL-RME-WG with 𝜃 = 1∕2.

To verify the accuracy and effectiveness of the proposed CSL-RME, we conduct a spatial convergence test. Table 1 presents the 
𝐿2 spatial discretization errors and the corresponding convergence orders. To ensure consistency between spatial and temporal 
accuracy, the time step is set as Δ𝑡 = 0.5(Δ𝑥∕𝑣𝑥𝑚 )

3∕2. The 𝐿2 error is calculated by comparing the numerical solutions with the 
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Fig. 2. Weibel instability: 𝐶 = 1. Time evolution of field energy (a) and kinetic energy (b). 

reference solutions [16], where the reference solutions are derived using the reversibility of the VM system [60]. Specifically, the 
simulation starts with initial conditions 𝑓 (𝑥,𝒗,0), 𝑬(𝑥,0), and 𝑩(𝑥,0). Running the code, we obtain the numerical solutions 𝑓 (𝑥,𝒗, 𝑡), 
𝑬(𝑥, 𝑡), and 𝑩(𝑥, 𝑡) at a specific time 𝑡. If we choose 𝑓 (𝑥,−𝒗, 𝑡), 𝑬(𝑥, 𝑡), and −𝑩(𝑥, 𝑡) as the initial conditions at time 𝑡, the numerical 
solution at 2𝑡 should ideally recover 𝑓 (𝑥,−𝒗,0), 𝑬(𝑥,0), and −𝑩(𝑥,0). In this test, we run the simulation up to 𝑡 = 10 and then return 
to 𝑡 = 0. The results in Table 1 demonstrate the expected third-order accuracy.

The above arguments demonstrate that the proposed CSL-RME, incorporating the Gauss correction, ensures the restoration of phys-

ically consistent solutions in the electrostatic regime while mitigating non-physics charge separation. Moreover, CSL-RME achieves 
third-order accuracy in space, facilitating the prediction of highly accurate solutions.

5.2. Weibel instability

In this section, the proposed method is applied to simulate the Weibel instability for two main purposes. Firstly, we aim to assess 
the consistency of the results obtained by CSL-RME with those of CSL-ME when the Debye scale 𝜆 is well resolved. Secondly, we 
investigate the performance of the proposed CSL-RME in terms of conservation properties and efficiency.

Here we consider a reduced 1d2v VM system, corresponding to the governing equation given by Eq. (51). We focus on the motion 
of electrons only, and the initial electron distribution function is [42,61,62],

𝑓𝑒(𝑥, 𝑣𝑥, 𝑣𝑦,0) =
1 

𝜋𝛽
√
𝑇𝑟

exp
[
−
(
𝑣2
𝑥
+ 𝑣2

𝑦
∕𝑇𝑟

)
∕𝛽

]
,

and the initial electromagnetic field is,

𝐸𝑥 (𝑥,0) = 0, 𝐸𝑦 (𝑥,0) = 0, 𝐵𝑧 (𝑥,0) = 𝛼0 sin(𝑘𝑥).

In our simulation, we set the perturbation coefficient 𝛼0 = 10−3, wave number 𝑘 = 1.25, thermal velocity 𝛽 = 0.04, and temperature 
ratio 𝑇𝑟 = 12. The normalized Debye length is 𝜆 = 1, and the speed of light is 𝑐 = 1. The phase space is defined as [0,𝐿𝑥]×[−𝑣𝑥𝑚 , 𝑣𝑥𝑚 ]×
[−𝑣𝑦𝑚 , 𝑣𝑦𝑚 ], where 𝐿𝑥 = 2𝜋∕𝑘 represents the length of the physics space, and 𝑣𝑥𝑚 = 1.2 and 𝑣𝑦𝑚 = 4.14 define the range of the velocity 
space. The physics space is discretized with a grid size of 𝑁𝑥 , while the velocity space has a grid size of 𝑁𝑣𝑥

×𝑁𝑣𝑦
. We apply periodic 

boundary conditions in the physics space. The time step size is determined as Δ𝑡 = 𝐶Δ𝑥∕𝑣𝑦𝑚 , and the simulation time is set to 50. 
Unless otherwise specified, we use 𝑁𝑥 =𝑁𝑣𝑥

=𝑁𝑣𝑦
= 128 and a CFL number of 𝐶 = 1.

First, we evaluate the accuracy of CSL-RME in comparison to CSL-ME using the default simulation parameters mentioned above, 
where the normalized Debye length and plasma oscillation period are well resolved (Δ𝑥 = 0.04𝜆 and Δ𝑡 = 0.01𝜆). In Fig. 2 we 
plot the time evolution of field energy and kinetic energy. The electric energy E𝐸 is defined as the sum of E𝐸𝑥

and E𝐸𝑦
, where 

E𝐸𝑥
= 1

2 ∫ |𝐸𝑥|2𝑑𝑥 and E𝐸𝑦
= 1

2 ∫ |𝐸𝑦|2𝑑𝑥. The magnetic energy E𝐵𝑧
= 1

2 ∫ |𝐵𝑧|2𝑑𝑥. The kinetic energy E𝐾 is defined as the sum 
of E𝐾𝑥

and E𝐾𝑦
, where E𝐾𝑥

= 1
2 ∫ 𝑓𝑣2

𝑥
𝑑𝑥𝑑𝑣𝑥𝑑𝑣𝑦 and E𝐾𝑦

= 1
2 ∫ 𝑓𝑣2

𝑦
𝑑𝑥𝑑𝑣𝑥𝑑𝑣𝑦. Clearly, both the field energy in Fig. 2 (a) and the 

kinetic energy in Fig. 2 (b) obtained from the proposed CSL-RME agree well with the CSL-ME solutions. The magnetic energy exhibits 
exponential growth and reaches saturation around 𝑡 = 27. Encouragingly, the growth rate predicted by CSL-RME is 𝛾 = 0.23, which 
is in good agreement with the theoretical value[61]. In the remaining part of this section, we will focus on presenting the results 
predicted by CSL-RME, considering their high similarity to the results obtained from CSL-ME.

Then we investigate the performance of proposed CSL-RME in terms of conservation properties, specifically system mass L1 , 
moment 𝐏, and total energy E𝑡, where L1 = ∫ 𝑓𝑑𝑥𝑑𝑣𝑥𝑑𝑣𝑦, 𝐏 = ∫ 𝒗𝑓𝑑𝑥𝑑𝑣𝑥𝑑𝑣𝑦 + ∫ 𝑬 ×𝑩𝑑𝑥, and E𝑡 = E𝐾 + E𝐸 + E𝐵𝑧

. To assess the 
conservation properties, we define the conservation error |Δ𝑉 | = |𝑉 (𝑡) − 𝑉 (0)|, where 𝑉 represents L1, P𝑥, P𝑦, or E𝑡. In Fig. 3, we 
present the time evolution of conservation error for proposed CSL-RME using the fine grids 𝑁 = 1283, together with the results by 
using the coarse grids 𝑁 = 323. Thanks to the CSL scheme, the system mass L1 is exactly conserved as expected. Regarding momentum 
conservation, the proposed CSL-RME demonstrates excellent conservation of P𝑥 , but it does not achieve exact conservation of P𝑦, 
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Fig. 3. Weibel instability: 𝐶 = 1. Time evolution of conservation error with fine grids 𝑁𝑥 = 128,𝑁𝑣𝑥
= 128,𝑁𝑣𝑦

= 128 (a) and coarse grids 𝑁𝑥 = 32,𝑁𝑣𝑥
= 32,𝑁𝑣𝑦

= 32
(b).

Fig. 4. Weibel instability: 𝑁𝑥 = 128,𝑁𝑣𝑥
= 128,𝑁𝑣𝑦

= 128. The contour of velocity distribution function at 𝑥=𝐿∕2 and 𝑡 = 27 for 𝐶 = 1 (a) and 𝐶 = 10 (b). 

which is consistent with the observations in [16,60,63]. Additionally, it can be observed that the proposed CSL-RME does not achieve 
exact energy conservation, but the conservation error remains relatively small. Encouragingly, similar conservation errors are also 
observed in Fig. 3 (b), even when using coarse grids.

In addition to the conservation properties, we are also interested in the efficiency of the CSL-RME, particularly in achieving 
reasonable physics results with larger time steps. To investigate this, we compare the results obtained with two different CFL numbers, 
𝐶 = 1 and 𝐶 = 10, while keeping the grid size constant at 𝑁 = 1283. Fig. 4 presents the velocity distribution function at 𝑥 =𝐿∕2 and 
𝑡 = 27 for 𝐶 = 1 and 𝐶 = 10. It is evident from the figure that electrons exhibit a strong anisotropy, leading to different temperatures. 
This anisotropy plays a crucial role in driving the growth of the magnetic field 𝐵𝑧. Furthermore, it can be observed that the microscopic 
structure captured by the proposed CSL-RME with 𝐶 = 10 is comparable to the results obtained with 𝐶 = 1, indicating the high 
accuracy of the proposed method. This suggests that CSL-RME is capable of providing reasonable physics results even with larger 
time step size, enhancing its computational efficiency.

The above arguments demonstrate that CSL-RME predicts nearly identical results to CSL-ME when the Debye scale is well resolved. 
Furthermore, the numerical results indicate that the proposed method accurately conserves mass while mimics the moment and 
energy conservation. Significantly, the proposed CSL-RME exhibits satisfactory performance even when employing larger time step 
size, which is a highly advantageous feature in the lengthy simulations.

5.3. Plasma opening switch

In this section, we study the dynamics of a practical problem known as the Plasma Opening Switch (POS). The main purpose is 
to compare the performance of CSL-RME and CSL-ME in different Debye regimes. This comparison aims to illustrate that CSL-RME 
maintains the AP property in the quasi-neutral limit as 𝜆 approaches 0, while CSL-ME does not exhibit such behavior.

POS is a device utilized in pulse power supply systems to deliver a large current in a short timeframe. It consists of a coaxial 
cylindrical transmission line filled with a high-density plasma. During the switch-on process, charge separation occurs, leading to 
the formation of a sheath at the plasma boundary. This setup allows for the propagation of electromagnetic waves across the gap, 
generating extremely high-power pulses. In this section, a simplified 1d2v POS model is employed [3]. The governing equation for 
this model is represented by Eq. (51), taking into account both electrons and ions dynamics. The physics domain is defined as [0,𝐿], 
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Fig. 5. POS: 𝜆 = 1.2 × 10−3 . The plasma density 𝑛 (a), current density 𝐽 (b), electric field 𝐸𝑥 (c) and magnetic field 𝐵𝑧 (d) against physics space 𝑥 at 𝑡 = 0.02. 

where 𝐿 = 0.2 m. Initially, the plasma fills the region from 𝑥 = 0.05 m to 𝑥 = 0.15 m with a number density of 𝑛in. We consider three 
different initial number densities: 𝑛in = 1016 m−3 for low density, 𝑛in = 1018 m−3 for medium density, and 𝑛in = 1020 m−3 for high 
density plasma. Both electrons and ions follow Maxwell distributions initially, with equal temperatures 𝑇𝑖 = 𝑇𝑒 = 10 eV, focusing 
on carbon ions (𝑚𝑖 = 12 atom). The initial electromagnetic field is set to 0, and a transverse electromagnetic wave is introduced 
at 𝑥 = 0 with an electric field given by 𝐸𝑦,in(𝑡) = −𝐸in

[
1 + (𝑡∕𝑡in)4

]−6 + 𝐸in, where the amplitude of the incident electric field is 
𝐸in = −1.8 × 108 V∕m and the response time is 𝑡in = 10−8 s.

In our simulation, we adopt the following reference values for length, temperature, number density, and mass: 𝑥0 = 𝐿, 𝑇0 = 𝑇𝑒, 
𝑛0 = 𝑛𝑖𝑛, 𝑚0 = 𝑚𝑒. Following the dimensionless process described in section 2.1, we determine the reference values as follows: a 
reference magnetic field of 𝐵0 = 3.8 × 10−5 T, a reference electric field of 𝐸0 = 50 V, and a reference time of 𝑡0 = 1.5 × 10−7 s. 
Consequently, the speed of light is 𝑐 = 226 and the normalized Debye lengths 𝜆 for low, medium, and high density plasmas are 
1.2 × 10−3, 1.2 × 10−4, and 1.2 × 10−5, respectively. The dimensionless physics domain is [0,1], which is discretized with a grid 
size of 𝑁𝑥 = 100. The electron velocity space spans [−20,5] × [−5,120], and the ion velocity space spans [−5,5] × [−5,5]. Both the 
electron and ion velocity grids have a size of 𝑁𝑣𝑥 ×𝑁𝑣𝑦 = 100 × 100. The numerical time step is determined as Δ𝑡 = 𝐶Δ𝑥∕𝑣max, 
where 𝑣max = 120 and 𝐶 = 0.9. In this simulation, we set 𝜃 to 1. The physics boundary and electromagnetic field boundary of the 
distribution function are implemented using zero-inflow boundary [8] and the absorption boundary [64]. Here the time scale and 
spatial scale are specifically defined with respect to electron oscillation period and electron Debye length, respectively, which are 
both represented by 𝜆.

First, we consider the low-density plasma case with 𝜆 = 1.2 × 10−3. The numerical parameters for this case are Δ𝑥 = 10−2 = 8.5𝜆
and Δ𝑡 = 7.5×10−5 = 6.4×10−2𝜆, indicating that the spatial resolution is lower than the electron Debye length, but the time resolution 
is sufficient. Fig. 5 illustrates the spatial distributions of the low-density POS plasma and the electromagnetic field. The results from 
the CSL-RME agree well with those obtained from the CSL-ME. Despite the fact that the physics grid does not well resolve electron 
Debye length, CSL-ME still yields a stable numerical solution. This is due to the fact that the time step employed in the simulation 
already resolves the electron oscillation period [27]. It is noteworthy that the CSL-RME with 𝑁𝑥 = 100 produces results comparable 
to those obtained from the AP-PIC [3] with 𝑁𝑥 = 1000, but without numerical noise. In Fig. 5 (a), we can observe that due to the 
significantly smaller mass of electrons compared to ions, electrons are more easily accelerated by electromagnetic waves, as depicted 
in Fig. 5 (b). Consequently, they escape from the main plasma, leading to disruption of the quasi-neutral region and the formation of a 
sheath. This charge separation induces a strong electric field 𝐸𝑥 , as shown in Fig. 5 (c). Simultaneously, the magnetic field efficiently 
penetrates through the plasma, as illustrated in Fig. 5 (d). In this simulation, the PP limiter is crucial to prevent the occurrence of 
negative electron number densities and numerical oscillations.

Then, we consider the medium-density plasma with 𝜆 = 1.2 × 10−4. The numerical parameters for this case are Δ𝑥 = 85𝜆 and 
Δ𝑡 = 0.64𝜆. Remarkably, as shown in Fig. 6, the CSL-RME solution remains in good agreement with CSL-ME, even with a larger 
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Fig. 6. POS: 𝜆= 1.2 × 10−4 . The plasma density 𝑛 (a), current density 𝐽 (b), electric field 𝐸𝑥 (c) and magnetic field 𝐵𝑧 (d) against physics space 𝑥 at 𝑡 = 0.026. 

value of Δ𝑥 = 85𝜆. A comparison between the medium-density case and the previous low-density case shown in Fig. 5 reveals several 
notable differences. Firstly, the width of plasma sheath is narrower in the medium-density case, as depicted in Fig. 6 (a). Moreover, 
the electric field 𝐸𝑥 is stronger, as shown in Fig. 6 (c). Additionally, the generated current density by plasma is higher, as observed 
in Fig. 6 (b) (note that the reference density differs between the cases). Consequently, the magnetic field is effectively confined and 
prevented from penetrating into the main plasma, as illustrated in Fig. 6 (d). However, within the non-neutral region (0.25 < 𝑥 < 0.35), 
a strong magnetic field 𝐵𝑧 is generated. These findings highlight the influence of plasma density on the characteristics of the plasma 
sheath and the associated electromagnetic fields.

In the high-density plasma case, the numerical parameters are Δ𝑥 = 850𝜆 and Δ𝑡 = 6.4𝜆, CSL-ME fails to provide a stable numer-

ical solution due to insufficient resolution of the oscillation period. Encouragingly, CSL-RME still provides a stable and satisfactory 
solution, as depicted in Fig. 7. Notably, the main plasma region in the high-density case exhibits a predominantly quasi-neutral be-

havior, as shown in Fig. 7 (a). This can be attributed to the significant electron current density observed in Fig. 7 (b), the incident 
electric field depicted in Fig. 7 (c), and the magnetic field shown in Fig. 7 (d). These quantities experience significant reflection at 
the plasma edge, consistent with previous research [3]. These simulations demonstrate the advantageous AP properties of CSL-RME, 
which enable the effective handling of high-density plasmas and the transition from vacuum to high density plasma, even with coarse 
discretizations.

The above arguments indicate that, when the plasma oscillation period is not resolved, CSL-ME fails to provide stable results, 
while CSL-RME still can provide the reasonable results, exhibiting favorable AP properties in the quasi-neutral limit. Additionally, 
it is important to note that the computational cost of CSL-RME is comparable to that of CSL-ME per time step. This implies that 
CSL-RME offers a competitive computational efficiency, making it a viable choice for simulations while maintaining accuracy and 
stability.

5.4. Magnetic reconnection

In this section, we apply the CSL-RME to a 2d3v magnetic reconnection simulation known as the Geospace Environmental Mod-

elling (GEM) challenge. This simulation poses a significant numerical challenge due to its multidimensional nature, and it serves as 
a rigorous test for evaluating the accuracy, stability, and efficiency of the proposed CSL-RME method. The simulation involves the 
dynamics of both ions and electrons, following VM system, which has been previously described and will not be reiterated here.

Here, we utilize the GEM challenge proposed by Birn et al. [65], where the initial magnetic field in the 𝑥 − 𝑦 plane is governed 
by the Harris equilibrium distribution,

𝑩(𝑦) =𝐵0 tanh(𝑦∕𝜆0)𝒆𝑥 , (52)
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Fig. 7. POS: 𝜆= 1.2 × 10−5 . The plasma density 𝑛 (a), current density 𝐽 (b), electric field 𝐸𝑥 (c) and magnetic field 𝐵𝑧 (d) against physics space 𝑥 at 𝑡 = 0.026. 

where 𝜆0 = 𝜆𝑖∕2 represents the half thickness of the current sheet, and 𝜆𝑖 = 𝑐∕𝜔𝑝𝑖 corresponds to the ion inertial length. The initial 
electric fields are set to zero. The initial distribution of electrons and ions follows a shifted Maxwellian distribution,

𝑓 0
𝑠
= 𝑛 (𝑦)(√

2𝜋𝑣𝑡𝑠
)3 exp

[
−
𝑣2
𝑥
+ 𝑣2

𝑦
+ (𝑣𝑧 − 𝑣𝑑𝑠)2

2𝑣2
𝑡𝑠

]
, (53)

where the initial plasma number density is given by 𝑛(𝑦) = 𝑛0sech2(𝑦∕𝜆0). Slightly different from the original GEM simulation, in 
this study, the 𝑥-coordinate is chosen as GSM-𝑥, the 𝑦-coordinate is chosen as GSM-𝑧, and the 𝑧-coordinate is chosen in the opposite 
direction of GSM-𝑦.

To investigate the steady-state collisionless magnetic reconnection, we combine Eq. (52) with the Ampère’s law without the 
time-varying electric field term, yielding,

𝐵0
𝜆0

sech2(𝑦∕𝜆0) = −𝜇0𝑞𝑛0(𝑣𝑑𝑖 − 𝑣𝑑𝑒) . (54)

By substituting Eq. (53) and Eq. (54) into the Vlasov equation, we can easily obtain the drift velocity as follows,

𝑣𝑑𝑠 = −
2𝑚𝑠𝑣

2
𝑡𝑠

𝑞𝑠𝐵0𝜆0
. (55)

Furthermore, considering the balance between plasma thermal energy and magnetic energy, we can obtain the plasma thermal 
velocity,

𝑣𝑡𝑠 =

√
Θ𝑠𝐵

2
0

2𝜇0𝑛𝑠𝑚𝑠

, (56)

where Θ𝑠 =
𝑇𝑠

𝑇𝑒+𝑇𝑖
is the temperature ratio coefficient. Similar to other kinetic magnetic reconnection simulations [16,33,34,66,67], 

we choose the ion-to-electron temperature ratio as 𝑇𝑖∕𝑇𝑒 = 5, the reduced mass ratio as 𝑚𝑖∕𝑚𝑒 = 25, and the Alfvén velocity as 
𝑣𝑎 = 𝑐∕20. The physics computational domain is 

[
−𝐿𝑥,𝐿𝑥

]
× [−𝐿𝑦,𝐿𝑦], where 𝐿𝑥 = 12.8𝜆𝑖 and 𝐿𝑦 = 6.4𝜆𝑖.

In our simulation, the reference length, mass, and number density are chosen as the ion inertial length 𝜆𝑖 , ion mass 𝑚𝑖, initial plasma 
number density 𝑛0, respectively. The reference temperature is chosen as 𝑇0 = 𝑚𝑖𝑣

2
𝑎
∕𝑘𝐵 , which determines the reference velocity as 
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Fig. 8. Magnetic reconnection: Δ𝑡 = 0.02. Time evolution of reconnected flux predicted by CSL-RME, compared to the results of iPic3D [66], DKM(Thomas) [67], 
DKM(Schimtz) [34], and DKM(Umeda) [33](b).

Fig. 9. Magnetic reconnection: The out-of-plane magnetic field 𝐵𝑧 (a) and the electron velocity 𝑢𝑧𝑒 (b) at 𝑡 = 16. 

the Alfvén velocity 𝑣𝑎, and the reference time as the ion cyclotron period 𝑤−1
𝑐𝑖

. According to the dimensionless process described in 
Section 2.1, we have the dimensionless speed of light 𝑐 = 20, ion inertial length 𝜆𝑖 = 1, and initial magnetic field 𝐵0 = 1. From Eq. (56), 
we obtain the ion thermal speed 𝑣𝑡𝑖 =

√
5∕12 and the electron thermal speed 𝑣𝑡𝑒 =

√
25∕12, while from Eq. (55), we have the ion drift 

speed 𝑣𝑑𝑖 = −5∕3 and the electron drift speed 𝑣𝑑𝑒 = 1∕3. Correspondingly, plasma frequency 𝑤𝑝𝑒 = 100. The left and right boundaries 
are set as periodic boundaries, while the top and bottom boundaries are set as conducting walls. The physics space is discretized with 
a grid size of 𝑁𝑥 ×𝑁𝑦, where 𝑁𝑥 = 2𝑁𝑦. The electron velocity space is discretized in the range [−8𝑣𝑡𝑒,8𝑣𝑡𝑒]3, and the ion velocity 
space is discretized in the range [−9𝑣𝑡𝑖,9𝑣𝑡𝑖]3. Both velocity spaces adopt a uniform grid with 𝑁𝑣𝑥

×𝑁𝑣𝑦
×𝑁𝑣𝑧

= 26 × 26 × 26. The 
time step is set as Δ𝑡 = 0.02, the simulation time is up to 𝑡 = 40, and the physics grid size is 𝑁𝑥 = 128. Besides, a background particle 
with a density of 𝑛𝑏 = 0.2𝑛0 is introduced in the simulation. To trigger magnetic reconnection, a small perturbed magnetic island 
is introduced into the equilibrium field, denoted as 𝛿𝑩 = ∇𝜙 × 𝒆𝑧, where 𝜙(𝑥, 𝑦) = 𝜙0 cos(𝜋𝑥∕𝐿𝑥) cos(𝜋𝑦∕2𝐿𝑦), and 𝜙0 = 0.1𝐵0𝜆𝑖. 
Additionally, small perturbed magnetic fields can be added near the diffusion region to accelerate the reconnection process [68].

The magnetic flux 𝜓 = ∫ 𝐿𝑥

0 𝐵𝑦 (𝑥, 𝑦 = 0)𝑑𝑥 is an important parameter that is commonly used to validate numerical methods. Fig. 8
presents the time evolution of magnetic flux predicted by different kinetic methods, including the implicit PIC method iPic3D [66] 
and other DKM methods [16,33,34]. As shown in the figure, there are slight differences in the predicted magnetic flux evolution 
among different kinetic methods. The results obtained by proposed CSL-RME are in good agreement with those of iPic3D [67], with 
the magnetic flux reaching 1 around 𝑡 = 16, slightly earlier than the predictions of Schmitz et al. [34] and Umeda et al. [33]. However, 
all the methods predict that the magnetic flux reaches a steady state at 𝑡 > 30.

Previous research works [65,66] have shown that the difference in ion and electron dynamics leads to the generation of Hall 
currents, which in turn produce an out-of-plane magnetic field with a quadrupolar structure, which plays a crucial role in magnetic 
reconnection. Encouragingly, the proposed CSL-RME is able to reproduce the quadrupolar structure of the out-of-plane magnetic field 
𝐵𝑧, as depicted in Fig. 9 (a). Additionally, Fig. 9 (b) displays the out-of-plane electron velocity 𝑢𝑧𝑒, revealing a discernible central 
diffusion region with a width of approximately five ion inertial lengths [69].

Fig. 10 shows magnetic lines and the contours of the out-of-plane current density 𝑱 𝑧. We focus on the time 𝑡 = 16 onwards, 
corresponding to a reconnected flux 𝜓 = 1 as shown in Fig. 8. At 𝑡 = 16, the central region of current density initiates separation, 
indicating the presence of a separatrix in the magnetic topology, as shown in Fig. 10 (a). Subsequently, the current density undergoes 
rearrangement within the diffusion region, leading to a rapid reconnection process. At 𝑡 = 40, the separatrix and X-point become 
prominent, as illustrated in Fig. 10 (b). It should be noted that in the current CSL-RME simulation, the grid spacing is approximately 
14 times larger than the Debye length, and the time step is 2 times the electron oscillation period 𝑤−1

𝑝𝑒
. Despite the unresolved 

electron oscillation period and the severe under-resolution of the Debye length, the CSL-RME method remains stable and produces 
qualitatively similar results to higher-resolution simulations published in [33,34]. 
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Fig. 10. Magnetic reconnection. Magnetic field lines (black solid line) and the contours of out-of-plane current density 𝑱 𝑧 at 𝑡 = 16 (a) and 𝑡 = 40 (b). 

Fig. 11. Magnetic reconnection. Isosurfaces of electrons distribution function 𝑓𝑒(𝑣𝑥, 𝑣𝑦, 𝑣𝑧) for 𝑥 = 0, 𝑦 = 0 at 𝑡 = 16 (a) and 𝑡 = 40 (b). The velocity box ranges from 
[−6.5𝑣𝑡𝑒,6.5𝑣𝑡𝑒] for 𝑣𝑥 and 𝑣𝑦 and [−5𝑣𝑡𝑒,8𝑣𝑡𝑒] for 𝑣𝑧 .

As a direct kinetic method, CSL-RME enables the easy acquisition of the velocity distribution function, facilitating a more compre-

hensive understanding of dynamic properties of particles in magnetic reconnection. Fig. 11 presents electrons distribution function at 
the magnetic null point (𝑥 = 0, 𝑦= 0). As shown in Fig. 11 (a), at 𝑡 = 16, electrons distribution function exhibits significant anisotropy, 
indicating strong non-equilibrium features. This highlights the necessity of kinetic simulations in capturing the correct dynamic char-

acteristics of particles in this region. With the rapid development of reconnection, as reconnection reaches a steady state, as shown 
in Fig. 11 (b) at 𝑡 = 40, the electrons distribution exhibits an equilibrium state, exhibiting isotropy. 

The above arguments indicate that the proposed CSL-RME maintains favorable accuracy and stability in challenging multidimen-

sional simulations, even when the electron oscillation period is unresolved and the Debye length is severely under-resolved.

6. Conclusions

We have presented an asymptotic-preserving conservative Semi-Lagrangian (CSL) scheme for the Vlasov-Maxwell system. The 
key ingredients of the proposed method include the reformulated Maxwell equation obtained by semi-implicitly coupling of particle 
transport and electric field, as well as tracking of particle trajectories by using CSL scheme. These key ingredients allow the proposed 
method can provide reliable results in both quasi-neutral and non-quasi-neutral regimes even when the grid size and time step cannot 
resolve the Debye length and plasma period. Moreover, employing high-order CSL schemes ensures stable, accurate simulations 
that conserve system mass, even with very large CFL numbers. Importantly, the proposed method offers comparable computational 
complexity and cost per time step to explicit schemes, making it a promising alternative for plasma simulations, specially in multiscale 
simulations.

Continuing our research efforts to build upon the results presented above. When the computational time step cannot resolve the 
plasma oscillation period, the current method suppresses the rapid growth of the electric field and numerical heating. However, we 
acknowledge that, similar to semi-implicit particle methods [2,3], the current method can potentially introduce energy damping, 
which may lead to unphysical numerical cooling. In our near future work, we will develop an energy conserving kinetic scheme for 
electromagnetic plasma simulation. Additionally, as we progress towards conducting more realistic 3d3v simulations, the current 
method suffers from the curse of high dimensionality. We will actively investigate and implement memory reduction techniques to 
further enhance the computational efficiency of the proposed method.
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