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Abstract
We present fourth-order conservative non-splitting semi-Lagrangian (SL) Hermite essen-
tially non-oscillatory (HWENO) schemes for linear transport equations with applications for
nonlinear problems including the Vlasov–Poisson system, the guiding center Vlasov model,
and the incompressible Euler equations in the vorticity-stream function formulation. The
proposed SL HWENO schemes combine a weak formulation of the characteristic Galerkin
method with two newly constructed HWENO reconstruction methods. The new HWENO
reconstructions aremeticulously designed to strike a delicate balance between curbing numer-
ical oscillation and introducing excessive dissipation. Mass conservation naturally holds due
to the weak formulation of the semi-Lagrangian discontinuous Galerkin method and the
design of the HWENO reconstructions. We apply a positivity-preserving limiter to maintain
the positivity of numerical solutions when needed. Abundant benchmark tests are performed
to verify the effectiveness of the proposed SL HWENO schemes.
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1 Introduction

The transport equation in the form of

ut + ∇x · (a(u, x, t)u) = 0, (1.1)

where u(x, t) usually represents a density function of a conservative quantity in a velocity
field a(u, x, t) with x ∈ R

d , which is widely used in fluid mechanics and kinetic models.
Three popular approaches including the Eulerian approach, the Lagrangian approach, and

the semi-Lagrangian (SL) approach have been proposed for solving the transport problems.
Comparingwith the Eulerian and the Lagrangian approaches, the SL approach naturally holds
its advantages in terms of accuracy and efficiency for certain applicable problems. On one
hand, the same with the Lagrangian approach, the SL approach evaluates the solution along
the convection characteristics. Hence, it allows large numerical time steps comparing with
the Eulerian approach. On the other hand, as the Eulerian approach, the SL approach adopts
a fixed spatial mesh equipped with a wide range of different solution spaces for high-order
spatial accuracy. As a comparison, the Lagrangian approach suffers from statistical noise and
only achieves a low order of O(1/

√
N ) with N representing the number of sampling points.

It is challenging to efficiently simulate the transport problems, due to their complicated
solution structures such as discontinuity, filamentation; for instance, the Vlasov–Poisson
system has drastic high-frequency filamentation structures [29, 31] and the guiding cen-
ter Vlasov model has steep structures [35]. To handle such complicated structures, the SL
approach has been coupled with the discontinuous Galerkin (DG) method [22, 29, 30], the
weighted essentially non-oscillatory (WENO) schemes [18, 28, 34], and the HermiteWENO
(HWENO) schemes [6, 36, 40]. For the DGmethod, it needsmany degrees of freedom (DOF)
per element for its high-order version, especially in a high-dimension setting. For high-order
WENO schemes, they always require very wide reconstruction stencils, compared with the
DG method. The HWENO methods can be regarded as an intermediate transition from the
DG method to a WENO method. It requires significantly fewer degrees of freedom per ele-
ment compared with the DG method, and it uses a more compact stencil for high-order
reconstruction compared with the WENO method. Considering the high dimension of the
Vlasov-Possion system, develeping high-resolution Hermite WENO schemes in the frame-
work of the SL scheme is necessary for an efficient Vlasov solver with large time step and
high order accuracy.

The HWENO method was first introduced by Qiu and Shu in [26] and was further devel-
oped in [7, 11, 27, 39], which is shown to be more accurate than the same-order WENO
scheme. Notice that the HWENO schemes in [7, 11, 26, 27] use point-wise positive linear
weights to present the information of a high-degree polynomial as a convex combination of
the information of several low-degree polynomials. In [7, 11, 26, 27], such positive linear
weights do exist for the specific Gaussian points they require. However, one can find that such
positive linear weights do not exist for some special locations (even regions) in an Eulerian
grid for each HWENO reconstruction in [7, 11, 26, 27]. Notice that characteristic feet for
(1.1) can be located anywhere on an Eulerian grid; and the reconstruction designs in [7, 11,
26, 27] are not suitable for an SL method. Based on the observation above, in our previous
work [40], we adopted a 1-D hybrid HWENO reconstruction method proposed in [39], and
developed a dimensional-splitting SL hybrid HWENO scheme.

In our earlier work [41], we proposed fourth-order, locally conservative, non-splitting
semi-Lagangian finite volume WENO schemes for 2D linear transport equation and non-
linear Vlasov dynamics. The first aim of this paper is to incorporate the recently developed
HWENO reconstructionmethod in [39] denoted as HWENO-3 into this spatiotemporal semi-
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Lagrangian framework [41]. The new SLHWENO schemes do not rely on operator splitting.
One significant benefit of a non-splitting SL method is that it remains its designed temporal
order of accuracy for strongly nonlinear transport equations (in which the velocity field is
hard to be decoupled). For some nonlinear problems, splitting-based SL method suffers from
a first-order temporal error [41].

In the simulations of this paper, we find that the HWENO-3 is very dissipative for the
filamentation structures that including large-gradient extreme points. It leads to the second
aim of this paper: to propose new HWENO reconstruction methods that overcome the dis-
sipation nature of the HWENO-3 in [39]. One can also refer to splitting SL HWENO-3 in
[40] and clearly observe that the dissipation of the HWENO-3 method negatively affects the
accuracy of the swirling deformation flow test. To overcome the dissipation issue, we propose
two new two-dimensional (2-D) HWENO reconstruction methods, denoted by HWENO-1
and HWENO-2. Comparing with the HWENO reconstruction technique in [39], a key dif-
ference of the newly constructed reconstructions is that we rule out the participation of any
first-degree polynomial, which leads to large numerical dissipation. The two newly proposed
HWENO methods gather information from central or one-sided constructed polynomials,
which are at least quadratic. Theoretically, a good HWENO reconstruction approximates
the highest-degree polynomial where the solution is continuous and reduces to a one-sided
lower-degree polynomial when a discontinuity is involved. To achieve such a principle, we
propose two different strategies. For the HWENO-1, we follow the same technique in [39],
but based on newly chosen polynomials. The resulting HWENO-1 method has a significant
improvement in reducing numerical dissipation. On the other hand, the HWENO-2 directly
selects one polynomial from all candidates. This is equivalent to assigning weights of one or
zero to candidate polynomials. The stencil selection strategy of the HWENO-2 is motivated
by the targeted essentially non-oscillatory (TENO) schemes developed by Fu et al. [14–
16]. Recently, a Hermite TENO (HTENO) is developed in [19], which presents very good
numerical results. There are two reasons not to apply the HTENO method in [19]. Firstly, it
depends on point-wise positive linear weights as we mentioned before. Secondly, it is only a
one-dimensional version method. Both the HWENO-1 and HWENO-2 have a huge improve-
ment in terms of dissipation comparing with the HWENO reconstruction in [39]. But, there
are subtle differences in effectiveness. On one hand, the HWENO-1 is “smoother" due to
its nature of assigning non-zero weight to each candidate polynomial. As a comparison, the
HWENO-2 (or HTENO) only chooses one candidate, which means the piecewise polyno-
mial constructed by the HWENO-2 can be fragmented sometimes. On the other hand, the
HWENO-2 is more robust for capturing discontinuity since the highest-degree polynomial
is not involved at all as long as the stencil selecting strategy works correctly. In this paper,
we will describe the construction of the HWENO-1 and HWENO-2 in details and compare
these two strategies by extensive numerical tests.

The proposed non-splitting SL HWENO schemes incorporate the local adjoint problems,
drawing from both the SL DG methods [4, 5, 17] and the Eulerian-Lagrangian localized
adjoint methods (ELLAM) [10, 32]. This integration is utilized to update the zeroth-order and
first-ordermoments. In other words, we define the solution space as a P1 DG space. However,
through the HWENO reconstructions, the P1 DG solution is replaced with a piecewise
P3 polynomial for the solution evaluation. Such a procedure can be viewed as a PN PM
method introduced in [12]. The combination of the weak formulation of SL DG method and
the HWENO reconstruction can also be regarded as a one-step evolution Galerkin scheme
introduced in [24]. The proposed SL scheme requires a remapping procedure between a fixed
Eulerianmesh and a characteristic upstream twistedmesh. To achieve a fourth-order accuracy,
the remapping procedure can be summarized in the following three steps. Firstly, we define
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a cubic-curved numerical upstream mesh to approximate the real upstream mesh. Secondly,
a clipping technique is involved to gather the curved polygons generated from the Eulerian
mesh and the cubic-curvedmesh. Finally, apply piecewise integration over each cubic-curved
upstream cell. For nonlinear models, we couple the proposed SL HWENO schemes with the
fourth-order Runge–Kutta exponential integrator (RKEI) [9], which freezes the velocity field
for each stage, for high-order temporal accuracy. Notice that the evaluation of zeroth-order
moment (cell average) is equivalent to the formulation of the SL finite volume (FV) method
in [41]. The mass conservation, positivity preservation (PP), and fourth-order accuracy of
the proposed schemes can be proved, similar to [41]. For stability, under a linearized setting,
we numerically prove the unconditionally stable property of the proposed schemes by the
Fourier analysis.

An outline of this paper is as follows. In Sect. 2, we introduce the construction of the SL
HWENO schemes. In Sect. 3, we describe how to couple the proposed SL HWENO scheme
with the fourth-order RKEI method for nonlinear models. A variety of numerical tests are
provided in Sect. 4. Finally, a conclusion is presented in Sect. 5.

2 Two-Dimensional SL HWENO Schemes

Consider the following linear transport equation

ut + (a(x, y, t)u)x + (b(x, y, t)u)y = 0, (2.1)

where (a(x, y, t), b(x, y, t)) represents a known velocity field and u(x, y, t) is a den-
sity function. We assume a rectangle computational domain � := [xL , xR] × [yB , yT ]
and a corresponding discretization such that xL = x 1

2
< x 3

2
< · · · < xNx+ 1

2
= xR ,

yB = y 1
2

< y 3
2

< · · · < yNy+ 1
2

= yT , with I xi :=
[
xi− 1

2
, xi+ 1

2

]
, I yj :=

[
y j− 1

2
, y j+ 1

2

]
,

Ii, j := I xi × I yj , xi :=
x
i− 1

2
+x

i+ 1
2

2 , y j :=
y
j− 1

2
+y

j+ 1
2

2 , �xi := xi+ 1
2

− xi− 1
2
and

�y j := y j+ 1
2

− y j− 1
2
. We define a P1 DG solution space V 1

h := {uh |uh(x, y)|Ii, j ∈
P1(Ii, j ) ∀i, j}. Consider an Eulerian cell Ii, j at t = tn+1 and define a dynamic character-
istic region Ii, j (t) := {(x∗, y∗) | (x∗, y∗) = (X(x, y; t), Y (x, y; t)) , (x, y) ∈ Ii, j }, where
(X(x, y; t), Y (x, y; t)) represents the characteristic curve emanating from (x, y, tn+1), i.e.,
the solution of the ordinary differential equations (ODEs)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

dX(t)/dt = a(X(t), Y (t), t),

dY (t)/dt = b(X(t), Y (t), t),

X(tn+1) = x,

Y (tn+1) = y.

(2.2)

We define an adjoint problem of (2.1) as in [4] on Ii, j (t) × [tn, tn+1]: for a given test
function W (x, y) ∈ P1(Ii, j ),

{
wt + a(x, y, t)wx + b(x, y, t)wy = 0, t ∈ [tn, tn+1)

w(t = tn+1) = W (x, y).
(2.3)

By the Reynolds transport Theorem, we have,

d

dt

∫∫

Ii, j (t)
u(x, y, t)w(x, y, t)dxdy = 0. (2.4)
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Fig. 1 Schematic illustration for
the characteristic upstream cell
I �i, j

From (2.4), an SL scheme is naturally formulated:

1

�xi�y j

∫∫

Ii, j
u(x, y, tn+1)W (x, y)dxdy = 1

�xi�y j

∫∫

I �
i, j

u(x, y, tn)w(x, y, tn)dxdy,

(2.5)

where I �
i, j = Ii, j (tn) (see Fig. 1).

For given time level tn , we denote the first three moments of the solution by {ui, j }, {vi, j },
and {wi, j }. Then, we denote the numerical solution on tn by un with

un(x, y) = ui, j + 12vi, j

(
x − xi
�xi

)
+ 12wi, j

(
y − y j
�y j

)
, (x, y) ∈ Ii, j . (2.6)

For constructing an SL HWENO scheme, it is sufficient to take W (x, y) = 1, (x − xi )/�xi ,
(y − y j )/�y j and evaluate the right-hand side of (2.5) accurately. To approximate the
right-hand side of (2.5), in Sect. 2.1, we first introduce the two newly constructed HWENO
reconstructions to recover a piecewise cubic polynomial, denoted by Hn(x, y), to approxi-
mate u(x, y, tn) in (2.5). Then, in Sect. 2.2, cubic-curved quadrilaterals, denoted by { Ĩ �

i, j },
are defined for approximating {I �

i, j } and a cubic polynomial w̃(x, y) is constructed over each

Ĩ �
i, j by a least square procedure to approximate the test function w(x, y). Finally, we briefly

summarize the integration strategy on Ĩ �
i, j in Sect. 2.3.

2.1 Two-Dimensional HWENO ReconstructionMethods

For convenience, we require�xi ≡ �x, �y j ≡ �y, ∀i, j . Based on the P1 DG solution,
un(x, y), we recover a piecewise P3 polynomial,

Hn(x, y) = H (i, j)(x, y), (x, y) ∈ Ii, j , ∀(i, j), (2.7)

where H (i, j)(x, y) ∈ P3(Ii, j ). We define a set of local orthogonal basis of the high order
polynomial denoted as {Pl(x, y)} with:

P1(x, y) = 1, P2(x, y) = μi (x) := x − xi
�x

, P3(x, y) = ν j (y) := y − y j
�y

,

P4(x, y) = μ2
i − 1

12
, P5(x, y) = μiν j , P6(x, y) = ν2j − 1

12
,
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Fig. 2 Stencil for the HWENO
reconstructions on 2-D Cartesian
mesh

P7(x, y) = μ3
i − 3

20
μi , P8(x, y) =

(
μ2
i − 1

12

)
ν j , P9(x, y) = μi

(
ν2j − 1

12

)
,

P10(x, y) = ν3j − 3

20
ν j , P11(x, y) =

(
μ2
i − 1

12

) (
ν2j − 1

12

)
. (2.8)

We also define that un5 := uni, j , v
n
5 := vni, j ,w

n
5 := wn

i, j , I5 := Ii, j and other {uns }, {vns }, {wn
s },

{Is} represent corresponding moments and Eulerian cells based on the serial numbers in
Fig. 2. Then, the 2-D HWENO reconstruction methods over Ii, j are summarized as follows.

Step 1. Reconstruct the first-order moments.
The first-order moments, {vn5, wn

5}, can be extremely large when u(x, y, tn) is discontin-

uous in Ii, j since vn5 ∼ �x
12

∂u
∂x |(xi ,y j ) and wn

5 ∼ �y
12

∂u
∂ y |(xi ,y j ). Hence, before recovering a

cubic polynomial, we reconstruct the first-order moments with the following two goals: it
will provide high-order approximations of first-order moments when u(x, y, tn) is smooth
in Ii, j ; when u(x, y, tn) is discontinuous in Ii, j , first-order moments will be reduced to a
reasonable level.

The two first-order moments can be regarded as local indicators of the changing rates for
the x- and y-dimensions. Each of them is highly independent of the other dimension. Hence,
the reconstruction is performed in a dimension-by-dimension manner. Below, we take the x
direction as an example to illustrate the procedure for reconstructing its first-order moment.

Step 1.1. Compute approximations to the first-order moment and smoothness indicators
from 1-D polynomial reconstructions.

1. Construct a quartic polynomial p0(x), and three quadratic polynomials {pk(x)}3k=1 sat-
isfying

1

�x

∫

I xi+l

p0(x)dx = uni+l, j , l = −1, 0, 1,

1

�x

∫

I xi+l

p0(x)

(
x − xi+l

�x

)
dx = vni+l, j , l = −1, 1,

(2.9)
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and

1

�x

∫

I xi+l

p1(x)dx = uni+l, j , l = −1, 0,
1

�x

∫

I xi−1

p1(x)

(
x − xi−1

�x

)
dx = vni−1, j ,

1

�x

∫

I xi+l

p2(x)dx = uni+l, j , l = −1, 0, 1,

1

�x

∫

I xi+l

p3(x)dx = uni+l, j , l = 0, 1,
1

�x

∫

I xi+1

p3(x)

(
x − xi+1

�x

)
dx = vni+1, j .

(2.10)

2. Compute the first-order moments of {pk(x)}3k=0:

ṽ
n
i, j,0 := 1

�x

∫

I xi

p0(x)

(
x − xi
�x

)
dx = − 5

76
uni−1, j − 11

38
vni−1, j

− 11

38
vni+1, j + 5

76
uni+1, j ,

ṽ
n
i, j,1 := 1

�x

∫

I xi

p1(x)

(
x − xi
�x

)
dx = 1

6
uni, j − 1

6
uni−1, j − vni−1, j ,

ṽ
n
i, j,2 := 1

�x

∫

I xi

p2(x)

(
x − xi
�x

)
dx = 1

24
uni+1, j − 1

24
uni−1, j ,

ṽ
n
i, j,3 := 1

�x

∫

I xi

p3(x)

(
x − xi
�x

)
dx = 1

6
uni+1, j − 1

6
uni, j − vni+1, j .

(2.11)

3. Compute the smoothness indicators {βk}3k=0 of {pk(x)}3k=0 [20, 23, 33]:

βk =
r∑

l=1

1

�x

∫

I xi

(
�xl

∂ l

∂xl
pk(x)

)2

dx, k = 0, 1, 2, 3 (2.12)

with r representing the degree of the corresponding polynomial. Here, the smoothness
indicators {βk}3k=1 can be explicitly expressed by

β1 =
(
12̃v

n
i, j,1

)2 + 156
(̃
v
n
i, j,1 − vni−1, j

)2
,

β2 =
(
12̃v

n
i, j,2

)2 + 13

12

(
uni+1, j − 2uni, j + uni−1, j

)2
,

β3 =
(
12̃v

n
i, j,3

)2 + 156
(
vni+1, j − ṽ

n
i, j,3

)2
.

(2.13)

We refer to [39] for the explicit expression of β0.
4. Compute a full stencil global reference smoothness indicator [19]:

τ :=
( |β0 − β1| + |β0 − β3|

2

)2

. (2.14)

By the Taylor expansion, we can find that τ = O(�x6), if there is no discontinuity
involved.

Step 1.2. Weight the collected first-order moments.
Below, we first introduce the weighting strategy for the HWENO-1.
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1. Compute the nonlinear weights using Z-type weighting strategy in [2, 8] by

ωk = ωk∑
l ωl

with ωk = γk

(
1 + τ

βk + ε

)
k = 0, 1, 3, (2.15)

where ε = 10−40 is set to avoid the denominator being zero. The linear weights,
{γ0, γ1, γ3}, are chosen as {0.6, 0.2, 0.2} in this paper. We refer to [39, 42] for more
details on linear and nonlinear weights.

2. Reconstruct the x-dimension first-order moment, vn5, by

ṽ
n
5 = ω0

γ0

(̃
v
n
i, j,0 − γ1ṽ

n
i, j,1 − γ3ṽ

n
i, j,3

)
+ ω1ṽ

n
i, j,1 + ω3ṽ

n
i, j,3. (2.16)

The WENO weighting procedure presented in (2.16) originates from the WENO-ZQ
reconstruction method, as detailed in [42], and has been further developed in [1, 38, 39].
For a detailed accuracy analysis, we refer readers to these studies. A similar formula will
be employed later for reconstructing a polynomial in Ii, j .

The HWENO-2 reconstructs the first-order moment vn5 as follows.

1. Separate the discontinuities from broad-band smooth fluctuations as illustrated in [14,
15] and also motivated by the Z-type weighting strategy in [2, 8] by first taking

ηk =
(
1 + τ

βk + ε

)6

k = 1, 2, 3, (2.17)

where ε = 10−40 is used to avoid the denominator being zero as in [2]. If there is no
discontinuity involved, we can find that ηk ≈ 1 for all k. If there is discontinuity involved
for the global three-cells stencil, the η value for a smooth small stencil can be greatly
enlarge with a magnitude of O(�x−12). Then, we normalize {ηk}3k=1 with

κk = ηk∑3
l=1 ηl

k = 1, 2, 3. (2.18)

2. Reconstruct the x-dimension first-order moment vn5 by:

ṽ
n
5 = ṽ

n
i, j,0, if min

k
κk > CT , (2.19)

otherwise

ṽ
n
5 =

{
ṽ
n
i, j,1, if κ1 > κ3,

ṽ
n
i, j,3, if κ3 > κ1.

(2.20)

whereCT is a parameter decidingwhether a correspondingpolynomial shouldbe involved
[15]. We empirically choose CT = 10−3 as in [19]. For treating discontinuity, unlike
[15, 19], we only choose the smoothest polynomial for reconstruction, since the weighted
summation does not increase the order of accuracy for our case. When {κk} matches the
smoothness of the three-cells stencil, we directly use ṽ

n
i, j,0 for optimal accuracy.

Remark 2.1 As outlined in the introduction, the reconstruction presented in (2.19) funda-
mentally aligns with the ENO or TENO type of reconstruction. For simplicity, we refer to
this reconstruction as HWENO-2, rather than HENO or HTENO, considering it as a unique
weighting strategy where the weights are either 0 or 1.
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The first-order moment in y direction can be reconstructed in a similar way; we denote
the reconstructed first-order moment in this direction by w̃

n
5.

Step 2. Recover the reconstructed Hn(x, y) on Ii, j .
Step 2.1. Collect information from different 2-D polynomials.

1. Construct a polynomial q̃0(x, y) := ∑11
l=1 a

q0
l Pl(x, y) such that

1

�x�y

∫∫

Is
q̃0(x, y)dxdy = uns , s = 1, 2, . . . , 9,

1

�x�y

∫∫

I5
q̃0(x, y)

(
x − xi
�x

)
dxdy = ṽ

n
5,

1

�x�y

∫∫

I5
q̃0(x, y)

(
y − y j
�y

)
dxdy = w̃

n
5 .

(2.21)

Let q0(x, y) = ∑10
l=1 a

q0
l Pl(x, y), which is the orthogonal projection of q̃0(x, y) to

P3(Ii, j ). We provide the explicit expressions of {aq0l }10l=1 in Appendix A.

2. Construct four quadratic polynomial {qk(x, y)}4k=1 := {∑6
l=1 a

qk
l Pl(x, y)}4k=1 satisfying

1

�x�y

∫∫

Is
qk(x, y)dxdy = uns ,

1

�x�y

∫∫

I5
qk(x, y)

x − xi
�x

dxdy = ṽ
n
5,

1

�x�y

∫∫

I5
qk(x, y)

y − yi
�y

dxdy = w̃
n
5,

(2.22)

where

s = 1, 2, 4, 5, for k = 1; s = 2, 3, 5, 6, for k = 2;
s = 4, 5, 7, 8, for k = 3; s = 5, 6, 8, 9, for k = 4.

(2.23)

The explicit expressions of {aqkl } are given in Appendix A.
3. Compute the smoothness indicator [20, 23, 33] {β̂k}4k=0 of {qk(x, y)}4k=0:

β̂0 = 1

�x�y

∑
l1+l2<=3

∫∫

Ii, j

(
�xl1�yl2

∂ |l1+l2|

∂xl1∂ yl2
q0(x, y)

)2

dxdy;

β̂k = 1

�x�y

∑
l1+l2<=2

∫∫

Ii, j

(
�xl1�yl2

∂ |l1+l2|

∂xl1∂ yl2
qk(x, y)

)2

dxdy, k = 1, 2, 3, 4.

(2.24)

The explicit expression of {β̂k}4k=0 can be given by

β̂0 =
(
aq02 + 1

10
aq07

)2

+
(
aq03 + 1

10
aq010

)2

+ 13

3

(
aq04

)2 + 7

6

(
aq05

)2 + 13

3

(
aq06

)2

+ 781

20

(
aq07

)2 + 47

10

(
aq08

)2 + 47

10

(
aq09

)2 + 781

20

(
aq010

)2 ;

β̂k = (
aqk2

)2 + (
aqk3

)2 + 13

3

(
aqk4

)2 + 7

6

(
aqk5

)2 + 13

3

(
aqk6

)2
for k = 1, 2, 3, 4.

(2.25)
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4. Compute a full stencil global reference smoothness indicator:

τ̂ =
(

|β̂0 − β̂1| + |β̂0 − β̂2| + |β̂0 − β̂3| + |β̂0 − β̂4|
4

)2

. (2.26)

Similarly, by the Taylor expansion, we can easily check that τ̂ = O(�x6), if there is no
discontinuity involved.

Step 2.2. Weight the collected 2-D polynomials.
The HWENO-1 weights the polynomials as follows.

1. Compute the nonlinear weights using Z-type weighting strategy in [2, 8] by

ω̂k = ω̃k∑
l ω̃l

with ω̃k = γk

(
1 + τ

βk + ε

)
k = 0, 1, 2, 3, 4, (2.27)

where ε = 10−40 is set to avoid the denominator being zero. The linear weights, {γk}4k=0
are chosen as {0.6, 0.1, 0.1, 0.1, 0.1} in this paper.

2. Construct H (i, j)(x, y) := ∑10
l=1 al Pl(x, y):

H (i, j)(x, y) = ω̂0

γ̂0

(
q0(x, y) −

4∑
k=1

γ̂kqk(x, y)

)
+

4∑
k=1

ω̂kqk(x, y), (x, y) ∈ Ii, j .

(2.28)

Here, the coefficients {al} can be explicitly given by

a1 = un5; a2 = 12̃v
n
5; a3 = 12w̃

n
5;

al = ω̂0

γ̂0
aq0l +

4∑
k=1

(
ω̂k − ω̂0

γ̂0
γ̂k

)
aqkl for l = 4, 5, 6;

al = ω̂0

γ̂0
aq0l for l = 7, 8, · · · , 10.

(2.29)

The HWENO-2 weights the polynomials as follows.

1. Compute the separation parameters {η̂k}4k=1 and the corresponding normalized parame-
ters {κ̂k}4k=1 similarly:

κ̂k = η̂k∑3
l=1 η̂l

with η̂k =
(
1 + τ̂6

β̂k + ε

)6

for k = 1, 2, 3, 4, (2.30)

where ε = 10−40.
2. Construct H (i, j)(x, y) by

H (i, j)(x, y) = q0(x, y), if min
k

κ̂k > CT , (2.31)

otherwise

H (i, j)(x, y) = qK (x, y) with K being the index such that κ̂K = max
k

κ̂k . (2.32)

Here, CT is chosen as 10−3.

In particular, if ṽ
n
i, j = ṽ

n
i, j,0, w̃

n
i, j = w̃

n
i, j,0 (with similar notation), and H (i, j)(x, y) =

q0(x, y) ∀i, j, we call such a reconstruction linear reconstruction.
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Fig. 3 Schematic illustration for the GLL points {vk } at tn+1 time level (a) and for the characteristic feet {v�
k }

at tn time level (b). Left: the black solid lines represent the Eulerian mesh; the black dots are the GLL points
located on the Eulerian cell Ii, j . Right: the black solid lines represent the Eulerian mesh; the red solid lines
represent the boundary of I �i, j ; the black dots are the characteristic feet obtained by solving (2.2)

2.2 Constructing Cubic-Curved Upstream Cells and Approximatingw(x, y, tn)

To evaluate the right-hand side of (2.5), it remains to provide the approximations of {I �
i, j }

and w(x, y, tn). For a given index (i, j), the cubic-curved quadrilateral upstream cell, Ĩ �
i, j ,

and the cubic polynomial w̃(x, y) on Ĩ �
i, j are constructed by the following procedure.

Step 1. Tracing characteristics backward in time.
We locate 4 × 4 Gauss-Legendre-Lobatto (GLL) points, denoted by {vk}, on Ii, j . We

determine the characteristic feet, denoted by {v�
k }, of these GLL points by solving (2.2) at

t = tn (see Fig. 3). In practice, we solve the ODEs (2.2) by a fourth-order Runge–Kutta (RK)
method.

Step 2. Constructing cubic-curved quadrilateral upstream cell Ĩ �
i, j .

Wedetermine the cubic-curvedquadrilateral Ĩ �
i, j by constructing its edges.The edges of the

cubic-curved quadrilateral upstream cells are constructed by a cubic interpolation procedure
(see [41]). In particular, we prefer to use a parametric form to present any cubic-curved edge:

{
x(ξ) = xaξ3 + xbξ2 + xcξ + xd ,

y(ξ) = yaξ3 + ybξ2 + ycξ + yd , ξ ∈ [−1, 1]. (2.33)

Step 3. Constructing w̃(x, y).
By the adjoint problem (2.3), we have

w(x(v�
k ), y(v

�
k )) = W (x(vk), y(vk)) for k = 1, 2, . . . , 16. (2.34)

Hence, by a standard least square procedure, we obtain a cubic polynomial w̃(x, y) ∈ P3

such that w(x, y, tn) − w̃(x, y) = O(�x4).
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Fig. 4 Schematic illustration for the outer integral segments (a) and the inner integral segments (b). The red
circles and triangles are the intersections of Ĩ �i, j and the Eulerian mesh

2.3 Numerical Integration

For numerically evaluating the right-hand side of (2.5), we integrate the piecewise polyno-
mial Hn(x, y)w̃(x, y) over each Ĩ �

i, j , which may cross different Eulerian background cells.

Hence, Ĩ �
i, j is first clipped into curved polygons such that Ĩ �

i, j = ∪(p,q)( Ĩ �
i, j ∩ Ip,q) and the

integrand is smooth in each polygon. For conciseness, the curved polygons
{
Ĩ �
i, j ∩ Ip,q

}

are denoted by
{
Ĩ �
i, j;p,q

}
. In particular, we are concerned about the information along the

edges of
{
Ĩ �
i, j;p,q

}
. The edges of

{
Ĩ �
i, j;p,q

}
, overlapping ∂ Ĩ �

i, j , with counterclockwise direc-

tion with respect to Ĩ �
i, j are denoted by {Lk

i, j;p,q} (see Fig. 4a). We call {Lk
i, j;p,q} the outer

integral segments of the upstream cell Ĩ �
i, j . Similarly, the edges of

{
Ĩ �
i, j;p,q

}
, overlapping

mesh lines, with counterclockwise direction with respect to the corresponding curved poly-
gons are denoted by {Sk

i, j;p,q} (see Fig. 4b). We call {Sk
i, j;p,q} the inner integral segments

of Ĩ �
i, j . We call the procedure of determining the integral segments the clipping method. For

implementation, we refer to [41] for more details.
With the clipped outer integral segments, {Lk

i, j;p,q}, as well as the inner integral segments,

{Sk
i, j;p,q}, we evaluate the right-hand side of (2.5) as follows

1

�x�y

∫∫

I �
i, j

u(x, y, tn)w(x, y)dxdy ≈ 1

�x�y

∫∫

Ĩ �
i, j

Hn(x, y)w̃(x, y)dxdy

= 1

�x�y

∑
(p,q)

∫∫

Ĩ �
i, j;p,q

H (p,q)(x, y)w̃(x, y)dxdy

= 1

�x�y

∑
(p,q)

∫

∂( Ĩ �
i, j;p,q )

[Pdx + Qdy]
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= 1

�x�y

∑
(p,q)

{ ∑
k

∫

Lk
i, j;p,q

[Pdx + Qdy]

+
∑
k

∫

Sk
i, j;p,q

[Pdx + Qdy]

}
, (2.35)

where P(x, y) and Q(x, y) are piecewise smooth auxiliary functions such that

− ∂P

∂ y
+ ∂Q

∂x
= H (p,q)(x, y)w̃(x, y). (2.36)

It is straightforward for evaluating the line integral on {Sk
i, j;p,q}. For the integral on an outer

integral segment, say Lk
i, j;p,q ,

∫

Lk
i, j;p,q

[Pdx + Qdy] =
∫ ξk+1

ξk

[
P (x(ξ), y(ξ)) x ′(ξ) + Q (x(ξ), y(ξ)) ν′

q(ξ)
]
dξ,(2.37)

where ξk and ξk+1 represent the ξ value of the start point and end point of Lk
i, j;p,q (2.33).

The proposed SL HWENO schemes also equip a PP limiter [37], when the analytical
solution of (2.1) stays positive. For the implementation of this PP limiter, we refer to [41]
for a detailed description.

Remark 2.2 We can numerically prove that the numerical update provided by (2.35) is
unconditionally stable for linear transport equations with constant coefficients and peri-
odic boundary condition if Hn(x, y) is reconstructed by the linear reconstruction defined in
Sect. 2.1. The proof is accomplished by the von Neumann analysis. We arrange this proof in
Appendix B.

3 SL HWENO Schemes for Nonlinear Models

The non-splitting SL HWENO schemes are coupled with a fourth-order RKEI in the same
framework as in [3] to solve nonlinearmodels such as theVlasov–Poisson system, the guiding
center Vlasov model, and the incompressible Euler equations in the vorticity-stream function
formulation. Below, we briefly describe these three models.

Arising from collisionless plasma, the Vlasov–Poisson system reads

ft + v fx + E(x, t) fv = 0, (3.1)

E(x, t) = −φx , − φxx (x, t) = ρ(x, t), (3.2)

where x represents the spatial position, v is the velocity, f (x, v, t) is the probability dis-
tribution function describing the probability of a particle at position x with velocity v

at time t . The electric field E is determined by the Poisson’s Eq. (3.2). φ is the self-
consistent electrostatic potential. ρ = ∫

R
f (x, v, t)dv − ρ0 is the charge density with

ρ0 = 1
|�x |

∫
�x

∫
R
f (x, v, 0)dvdx .

The 2-D guiding center Vlasov model describes highly magnetized plasma in the trans-
verse plane of a tokamak [13, 36], which can be written as:

ρt + ∇ ·
(
E⊥ρ

)
= 0, (3.3)

−�� = ρ, E⊥ = (−�y,�x ), (3.4)
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where ρ(x, y, t) is the charge density andE is the electric field depends on ρ via the Poisson’s
Eq. (3.4).

The 2-D incompressible Euler equations in vorticity-stream function formulation reads

ωt + ∇ · (uω) = 0, (3.5)

�ψ = ω, u = (−ψy, ψx ), (3.6)

where ω(x, y, t) is the vorticity of the fluid, u := (u1, u2) is the velocity field, and ψ is the
stream-function determined by the Poisson Eq. (3.6).

Notice that these three models can be written in the form of

ut + ∇ · (V(u(x, t))u) = 0, (3.7)

whereV(u(x, t)) represents the velocity field.We briefly summarize the SLHWENO scheme
coupled with the fourth-order RKEI as follows.

u(1) = un

u(2) = SLHWENO

(
1

2
V

(
u(1)

)
,�t

)
un

u(3) = SLHWENO

(
1

2
V

(
u(2)

)
,�t

)
un

u(4) = SLHWENO

(
−1

2
V

(
u(1)

)
+ V

(
u(3)

)
,�t

)
u(2)

un+1 = SLHWENO

(
− 1

12
V

(
u(1)

)
+ 1

6
V

(
u(2)

)
+ 1

6
V

(
u(3)

)
+ 1

4
V

(
u(4)

)
,�t

)

SLHWENO

(
1

4
V

(
u(1)

)
+ 1

6
V

(
u(2)

)
+ 1

6
V

(
u(3)

)
− 1

12
V

(
u(4)

)
,�t

)
un,

(3.8)

where SLHWENO
(
V

(
u(k)) , 1

2�t
)
u(l) represents the solution evolved from u(l) with time

step 1
2�t and velocity field V

(
u(k)) by a non-splitting SL HWENO scheme. For approxi-

mating the velocity field, we use the Fast Fourier transform to solve the Poisson’s equations.

4 Numerical Tests

4.1 Linear Transport Equations

In this subsection, we test two benchmark problems: the transport equation with constant
coefficients and the swirling deformation flow. We apply four numerical schemes, denoted
as SL HWENO-1, SL HWENO-2, SL HWENO-3, and SL WENO-ZQ schemes. The first
two are newly developed schemes presented in this paper. The third scheme is essentially
the same as the SL HWENO scheme described here, but with the HWENO-1 or HWENO-
2 reconstruction replaced by the HWENO-3 reconstruction from [39]. In the HWENO-3
reconstruction, we substitute the p0(x, y) ∈ P4 in [39] with the q0(x, y) constructed in
Sect. 2.1, aiming to maintain fourth-order spatial accuracy and enable the application of the
PP limiter. This adjustment is necessary as we currently can only ensure the PP property
for piecewise P3 polynomials in space. The SL WENO-ZQ scheme is identical to the non-
splitting SL scheme found in [41].
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Abrief discussion on computational efficiency is pertinent here.While efficiency is not the
central focus of this paper, it is important to note that the proposed SL schemes demonstrate
significant improvements in computational time, especially when compared to traditional
Eulerian schemes. Our SL schemes are capable of operating with arbitrary large CFL num-
bers, which allows for larger time steps and thus enhanced efficiency. In contrast, Eulerian
schemes (e.g., finite volume RKWENO or HWENO schemes) typically operate with a CFL
number around 0.6, marking a substantial difference in time-stepping capabilities. However,
due to the extensive scope required for a rigorous comparison with Eulerian schemes, such
an analysis is beyond the scope of the current revision. Nonetheless, the tests in this sec-
tion include comparisons of L1 and L∞ errors against CPU times for all four SL schemes,
providing a quantitative measure of their efficiency.

Through the following tests, our goal is to showcase the performance of the SL schemes
and compare the differences between various reconstructions in terms of spatial and temporal
accuracy, numerical stability, and resolution of complex solution structures.

Unless otherwise specified, we set �t = CFL
max|a(x,y,t)|

�x +max|b(x,y,t)|
�y

with CFL = 10.2. Here,

CFL = 10.2 is chosen to avoid the situation where the SL schemes decay into simple shifting
of numerical solutions for the transport equation with constant coefficients. The PP limiter
is applied to problems with non-negative initial conditions.

Example 4.1 (Transport equation with constant coefficients). Consider

ut + ux + uy = 0, x ∈ [−π, π], y ∈ [−π, π], (4.1)

with a smooth initial condition, u(x, y, 0) = sin(10(x + y)), and the periodic boundary
condition. The exact solution for this problem is u(x, y, t) = sin(10(x + y − 2t)). In Table
1, we present the L1 errors, L∞ errors, and their corresponding spatial orders of accuracy
for the SL schemes. As indicated, all schemes achieve fourth-order convergence. However,
the SL HWENO-3 and SLWENO-ZQ schemes require denser meshes to reach fourth-order
accuracy. In Fig. 5, we display log-log plots of CPU times versus the L1 and L∞ errors
under the same conditions as in Table 1. These plots reveal that the SL HWENO-1 and
SL HWENO-2 schemes are more efficient. Lastly, Fig. 6 shows the cross-sections of the
numerical solutions at x = y for the SL schemes at T = 20, using a fixed mesh size of
80 × 80. At this resolution, with four points per wavelength at x = y, the SL HWENO-3
and SL WENO-ZQ schemes appear to produce more smearing compared to the other two
schemes.

Example 4.2 (Swirling deformation flow). Consider

ut −
(
2πcos2

( x
2

)
sin(y)g(t)u

)
x

+
(
2πsin(x)cos2

( y

2

)
g(t)u

)
y

= 0,

x ∈ [−π, π], y ∈ [−π, π],
(4.2)

where g(t) = cos(π t/T ) with T = 1.5. We consider (4.2) with the following smooth initial
condition

u(x, y, 0) =
⎧⎨
⎩
rb0 cos(

rb(x)π
2rb0

)6 if rb(x) < rb0 ,

0, otherwise,
(4.3)

where rb0 = 0.3π , rb(x) =
√

(x − xb0 )
2 + (y − yb0 )

2 and the center of the cosine bell

(xb0 , y
b
0 ) = (0.3π, 0). Zero boundary condition is equipped for this test. In Table 2, we
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Table 1 (Transport equation with constant coefficients). L1 errors, L∞ errors and corresponding spatial
orders of accuracy for the SL schemes applied to Eq. (4.1) with initial condition u(x, y, 0) = sin(10(x + y)),
evaluated at T = 20 with CFL = 10.2

SL HWENO-1 SL HWENO-2
mesh L1 error order L∞ error order L1 error order L∞ error order

20× 20 6.40E–01 – 9.97E–01 – 6.40E–01 – 1.05E+00 –

40× 40 2.19E–01 1.55 5.79E–01 0.78 2.12E–01 1.59 3.95E–01 1.40

80× 80 1.47E–02 3.90 3.85E–02 3.91 1.48E–02 3.84 3.93E–02 3.33

160× 160 1.00E–03 3.88 2.42E–03 3.99 1.00E–03 3.89 2.42E–03 4.02

320× 320 6.31E–05 3.98 1.46E–04 4.06 6.31E–05 3.98 1.46E–04 4.06

SL HWENO-3 SL WENO-ZQ

20× 20 6.40E–01 – 9.96E-01 – 6.40E-01 – 9.96E-01 –

40× 40 6.31E–01 0.02 1.00E+00 −0.01 6.13E–01 0.06 9.66E–01 0.05

80× 80 1.32E–01 2.26 2.89E–01 1.80 1.99E–01 1.62 3.74E–01 1.37

160× 160 1.40E–03 6.55 3.76E–03 6.27 1.66E–02 3.58 4.21E–02 3.15

320× 320 6.58E–05 4.41 1.68E–04 4.48 3.10E–04 5.75 1.26E–03 5.07

Fig. 5 (Transport equation with constant coefficients). Log-log plots comparing CPU times and errors for the
SL schemes: L1 errors (left) and L∞ errors (right), under the same settings as in Table 1

present the L1 errors, L∞ errors and the corresponding spatial orders of accuracy of the SL
schemes. As illustrated, it ismore evident that the SLHWENO-1 and SLHWENO-2 schemes
achieve fourth-order accuracy. However, due to numerical dissipation, it is harder to demon-
strate fourth-order spatial accuracy for the SL HWENO-2 and SL WENO-ZQ schemes. In
Fig. 7, we present log-log plots of CPU times versus the L1 and L∞ errors, using the same
conditions as in Table 2. Among these, the SL HWENO-3 scheme exhibits the least effi-
cient performance for both L1 and L∞ errors. In terms of the L1 error, the SL WENO-ZQ
scheme proves to be the most efficient. However, for the L∞ error, the performance of the
SL WENO-ZQ scheme is nearly as poor as that of the SL HWENO-3 scheme.

In Fig. 8, we demonstrate the temporal order of accuracy for the SL schemes by main-
taining a fixed spatial mesh while varying the CFL number. We observe that the temporal
order reaches fifth-order for the swirling deformation flow, which is unexpectedly one order
higher than the anticipated fourth-order. However, we emphasize that this is not a general
phenomenon. It is possible that this unique outcome is due to the specific symmetry inherent
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Fig. 6 (Transport equation with constant coefficients). Cross-sections of the numerical solutions obtained
using the SL schemes for Eq. (4.1) with initial condition u(x, y, 0) = sin(x + y). These solutions correspond
to T = 20 and are based on a 100 × 100 mesh with CFL = 10.2

Table 2 (Swirling deformation flow). L1 errors, L∞ errors and corresponding spatial orders of accuracy for
the SL schemes applied to Eq. (4.2) with initial condition (4.3), evaluated at t = 1.5 with CFL = 10.2

SL HWENO-1 SL HWENO-2
mesh L1 error order L∞ error order L1 error order L∞ error order

20× 20 2.42E–03 – 2.80E–01 – 2.48E-03 – 2.82E-01 –

40× 40 1.72E–04 3.82 2.06E–02 3.77 2.97E–04 3.06 2.84E–02 3.31

80× 80 2.06E–05 3.05 2.33E–03 3.14 4.23E–05 2.81 7.72E–03 1.88

160× 160 8.61E–07 4.58 9.72E–05 4.58 3.10E–06 3.77 7.95E–04 3.28

320× 320 3.67E–08 4.55 4.10E–06 4.57 1.39E–07 4.49 5.42E–05 3.87

640× 640 1.50E–09 4.62 1.95E–07 4.39 4.71E–09 4.88 3.06E–06 4.15

1280×1280 6.70E–11 4.48 1.08E–08 4.17 6.70E–11 6.13 1.08E–08 8.14

2560×2560 3.50E–12 4.26 6.60E–10 4.03 3.50E–12 4.26 6.60E–10 4.03

SL HWENO-3 SL WENO-ZQ

20× 20 4.21E–03 – 5.65E–01 – 3.97E–03 – 5.17E–01 –

40× 40 8.45E–04 2.32 2.14E–01 1.40 7.67E–04 2.37 1.88E–01 1.46

80× 80 6.54E–05 3.69 4.01E–02 2.41 6.26E–05 3.62 4.03E–02 2.22

160× 160 3.93E–06 4.05 5.79E–03 2.79 2.96E–06 4.40 1.17E–02 1.78

320× 320 3.47E–07 3.51 1.16E–03 2.32 1.12E–07 4.73 2.06E–03 2.50

640× 640 1.94E–08 4.16 1.51E–04 2.94 3.98E–09 4.81 4.05E–04 2.35

1280×1280 2.07E–10 6.55 2.29E–06 6.04 1.38E–10 4.85 5.01E–05 3.02

2560×2560 3.62E–12 5.84 4.86E–09 8.88 4.18E–12 5.04 6.29E–08 9.64

in the swirling deformation flow. In this context, we merely report this observation without
conducting a rigorous analysis. From Fig. 13, we can also observe that the SL HWENO-3
and SLWENO-ZQ schemes are less accurate for different CFL numbers, which also reflects
the advantage of the proposed two new HWENO reconstructions. Another interesting phe-
nomenon is that, before the temporal errors start to dominate, the errors decrease as the CFL
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Fig. 7 (Swirling deformation flow). Log-log plots comparing CPU times and errors for the SL schemes: L1

errors (left) and L∞ errors (right), under the same settings as in Table 2

Fig. 8 (Swirling deformation flow). Temporal order of accuracy for the SL schemes, evaluated using L1 error
(left) and L∞ error (right). The simulations use a fix mesh of 160 × 160 and calculate the errors at t = 1.5

number increases. This phenomenon is due to the accumulated spatial error, as simulations
with smaller CFL numbers require more time steps.

To investigate the performance of the SL schemes with discontinuous solutions, we test
Eq. (4.2) using the initial condition depicted in Fig. 9. The contour plots of the numerical
solutions by the SL schemes at t = 1.5 are shown in Fig. 10, utilizing a mesh size of
100× 100 and a CFL of 10.2. In Fig. 11, two cross-sections of the numerical solutions from
Fig. 10 are presented. As observed, the SL schemes effectively capture the geometry of the
solution. The SL HWENO-1 and SL HWENO-2 schemes demonstrate superior resolution
while concurrently controlling numerical oscillations. In contrast, the SLHWENO-3 scheme
exhibits more dissipation compared to the other schemes.

4.2 Nonlinear Vlasov–Poisson System

In this subsection, we test one benchmark test, the strong Landau damping, for Vlasov–
Poisson system. Unless specified, we set Nx = 128, Nv = 256, CFL = 10.2, �t =

CFL
(vmax/�x+max{|E |}/�v)

with vmax representing the positive boundary in v-direction. The PP
limiter is equipped for all tests.
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Fig. 9 (Swirling deformation flow). The mesh plot (left) and the contour plot (right) of the discontinuous
initial data for (4.2)

Fig. 10 (Swirling deformation flow). Contour plots of the numerical solutions obtained using the SL schemes
for Eq. (4.2) with the initial condition shown in Fig. 9. These plots correspond to t = 1.5 and are based on a
100 × 100 mesh with CFL = 10.2

Example 4.3 (Strong Landau damping). Consider the VP system with the initial condition

f (x, v, t = 0) = 1√
2π

(1 + αcos(kx)) exp

(
−v2

2

)
, x ∈ [0, 4π], v ∈ [−2π, 2π],

(4.4)
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Fig. 11 (Swirling deformation flow). Cross-sections of the numerical solutions in Fig.10 at x ≈ 0.03 (left)
and y ≈ 1.2

Table 3 (Strong Landau damping). L1 errors, L∞ errors and corresponding spatial orders of accuracy for the
SL schemes applied to the strong Landau damping problem, evaluated at T = 5 with CFL = 10.2

SL HWENO-1 SL HWENO-2
mesh L1 error order L∞ error order L1 error order L∞ error order

16× 16 1.85E–02 – 2.39E-01 – 1.91E–02 – 2.56E-01 –

32× 32 2.53E–03 2.87 6.12E–02 1.96 3.08E–03 2.63 8.63E–02 1.57

64× 64 2.66E–04 3.25 5.96E–03 3.36 3.05E–04 3.33 1.86E–02 2.21

128× 128 1.52E–05 4.13 4.78E–04 3.64 1.64E–05 4.22 5.32E–04 5.13

256× 256 9.05E–07 4.07 3.18E–05 3.91 9.05E–07 4.18 3.18E–05 4.06

SL HWENO-3 SL WENO-ZQ

16× 16 2.56E–02 – 2.63E-01 – 2.37E-02 – 2.22E-01 –

32× 32 7.95E–03 1.68 1.65E–01 0.67 6.18E–03 1.94 1.43E–01 0.63

64× 64 7.39E–04 3.43 6.13E–02 1.43 7.16E–04 3.11 3.98E–02 1.85

128× 128 1.53E–05 5.60 7.44E–04 6.36 3.51E–05 4.35 1.50E–02 1.40

256× 256 9.04E–07 4.08 3.19E–05 4.54 1.17E–06 4.91 4.48E–05 8.39

where k = 0.5, α = 0.5. In Table 3, we present the L1 and L∞ errors, along with the
corresponding spatial orders of accuracy, for the SL schemes. These errors are calculated
by comparing the solution with a reference solution obtained through mesh refinement. We
note a distinct fourth-order accuracy for the SL HWENO-1 scheme. The SL HWENO-2
scheme shows a performance slightly inferior to that of the SL HWENO-1 scheme, but it is
more accurate than both the SL HWENO-3 and SL WENO-ZQ schemes. Figure12 features
log-log plots of CPU times versus L1 and L∞ errors under the same settings in Table 3,
providing a comparison of efficiency. Both the SL HWENO-1 and SL HWENO-2 schemes
demonstrate greater efficiency in terms of both L1 and L∞ errors. In Fig. 13, we present the
temporal order of accuracy of the SL schemes by fixing the spatial mesh while varying the
CFL number. We observe approximately 3.8th-order temporal accuracy for the L1 error and
approximately 3.5th-order temporal accuracy for the L∞ norm. Due to strong dissipation,
the SL WENO-ZQ scheme exhibits much large L∞ errors when its spatial errors dominate
the total errors.
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Fig. 12 (Strong Landau damping). Log-log plots comparing CPU times and errors for the SL schemes: L1

errors (left) and L∞ errors (right), under the same settings as in Table 3

Fig. 13 (Strong Landau damping). Temporal order of accuracy for the SL schemes, evaluated using L1 error
(left) and L∞ error (right). The simulations use a fix mesh of 128 × 128 and calculate the errors at T = 5

Figure 14 illustrates the time evolution of the first three Fourier modes of the electric field
using the SL schemes, represented as |Ek(0.5, t)|, |Ek(1.0, t)|, and |Ek(1.5, t)|, following the
notation in [25]. As observed, both the decaying and growing patterns of these three modes
align with the numerical results reported in the literature. Additionally, the corresponding
decay rates and growth rates presented in Fig. 14 closely match those found in previous
studies, specifically in [21] and [25].

In Fig. 15, we display contour plots of the numerical solutions obtained using the SL
schemes at T = 40. Additionally, cross-sections of these numerical solutions at x ≈ 2.6,
as depicted in Fig. 15, are shown in Fig. 16. We note that the numerical solutions effectively
retains the filamentation structure of the strong Landau damping problem. From the color
bars in Fig. 15 and the cross-sections, it is evident that the SL HWENO-3 and SLWENO-ZQ
schemes tend to smear information at points with large gradients.

TheVP system is characterized by several conserved quantities, includingmass, L p norms,
energy, and entropy, as highlighted in [31]. In Fig. 17, we employ the SL HWENO-1 scheme
to simulate strong Landau damping and assess the time evolution of the relative deviation of
mass and L1 norm in the numerical solution. To mitigate the effects of boundary truncation
in the v dimension, we set vmax = 10 for this simulation. The relative deviations in mass
and L1 norm are observed to be at the O(10−12) level. Notably, the relative deviation of
mass and L1 norm coincides at every data point, underscoring the effectiveness of the PP
limiter. Regarding the L2 norm, energy, and entropy, the time evolution of their relative

123



70 Page 22 of 34 Journal of Scientific Computing (2024) 99 :70

Fig. 14 (Strong Landau damping). Amplitude of the first three Fourier modes of electric feild from the SL
schemes applying a mesh of 256 × 256 and a CFL of 10.2

deviations, as simulated by the SL schemes, is elaborated in Fig. 18. These deviations are
of similar magnitude and closely align with the levels reported in previous studies [31] and
[29]. However, it is important to note that the proposed SL schemes were not originally
designed to conserve these quantities. Additionally, the settings of the simulations in the
existing literature vary. Therefore, we do not draw specific conclusions about the benefits of
using our schemes for the preservation of the L2 norm, energy, and entropy.

4.3 Guiding Center Vlasov Model

For the guiding center Vlasov model, unless specified, we set Nx = Ny = 256, CFL = 10.2,
and

�t = CFL/ (max{|E1|}/�x + max{|E2|}/�y) .

Example 4.4 (Kelvin–Helmholtz instability problem). Consider the guiding center Vlasov
model with the periodic boundary condition and with the following initial condition

ρ(x, y, 0) = sin(y) + 0.015cos(kx), x ∈ [0, 4π], y ∈ [0, 2π], (4.5)

where k = 0.5. In Table 4, we show the L1 errors, L∞ and corresponding spatial orders of
accuracy of the SL schemes. These errors are calculated by comparing the solution with a
reference solution obtained through mesh refinement. For this particular problem, the errors
and spatial orders of accuracy, which are consistently fourth-order, are nearly identical for
the SL HWENO-1 and SL HWENO-2 schemes. However, due to numerical dissipation,
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Fig. 15 (Strong Landau damping). Contour plots of the numerical solutions obtained using the SL schemes
for the strong Landau damping problem. These plots correspond to t = 1.5 and are based on a 128 × 256
mesh with CFL = 10.2

Fig. 16 (Strong Landau damping). Cross-sections of the numerical solutions in Fig. 15 at x ≈ 2.6

the spatial order data of the SL HWENO-3 and SL WENO-ZQ schemes are not as tidy.
A comparison of computational efficiency is provided in Fig. 19, where the SL HWENO-
1 and SL HWENO-2 schemes demonstrate greater efficiency for this problem. In Fig. 20,
we observe fourth-order temporal accuracy of SL schemes for L1 error and approximately
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Fig. 17 (Strong Landau damping). Performance of mass conservation and PP properties of the SL HWENO-1
scheme for the strong Landau damping problem with vmax = 10. The SL HWENO-1 scheme uses a mesh of
128 × 256 and a CFL of 10.2

Fig. 18 (Strong Landau damping). Relative deviations of the L2 norm (top left), energy (top right), and entropy
(bottom) simulated by the SL schemes using a mesh of 128 × 256 and a CFL of 10.2

3.8th-order temporal accuracy for the L∞ error.Due to dissipation, the SLHWENO-3 scheme
exhibits larger L1 and L∞ errors when spatial erros dominate the total errors.
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Table 4 (Kelvin–Helmholtz instability problem). L1 errors, L∞ errors and corresponding spatial orders of
accuracy for the SL schemes applied to the Kelvin–Helmholtz instability problem, evaluated at T = 5 with
CFL = 10.2

SL HWENO-1 SL HWENO-2
mesh L1 error order L∞ error order L1 error order L∞ error order

16× 16 8.90E–05 – 9.02E-04 – 8.90E–05 – 9.02E-04 –

32× 32 5.01E–06 4.15 6.72E–05 3.75 5.01E–06 4.15 6.72E–05 3.75

64× 64 3.09E–07 4.02 4.48E–06 3.91 3.09E–07 4.02 4.48E–06 3.91

128× 128 1.98E–08 3.97 2.85E–07 3.98 1.98E–08 3.97 2.85E–07 3.97

256× 256 1.24E–09 4.00 1.71E–08 4.06 1.24E–09 4.00 1.71E–08 4.06

SL HWENO-3 SL WENO-ZQ

16× 16 8.07E–03 – 6.41E–02 – 2.86E–03 – 3.10E–02 –

32× 32 7.37E–04 3.45 1.06E–02 2.59 1.41E–04 4.34 3.32E–03 3.22

64× 64 3.22E–05 4.52 2.64E–03 2.00 3.36E–06 5.39 2.81E–04 3.56

128× 128 1.43E–06 4.49 2.74E–04 3.27 9.41E–08 5.16 2.45E–05 3.52

256× 256 4.88E–09 8.20 3.74E–07 9.52 1.25E–09 6.24 2.84E–07 6.43

Fig. 19 (Kelvin–Helmholtz instability problem). Log-log plots comparing CPU times and errors for the SL
schemes: L1 errors (left) and L∞ errors (right), under the same settings as in Table 4

Fig. 20 (Kelvin–Helmholtz instability problem). Temporal order of accuracy for the SL schemes, evaluated
using L1 error (left) and L∞ error (right). The simulations use a fix mesh of 128 × 128 and calculate the
errors at T = 5
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Fig. 21 (Kelvin–Helmholtz instability problem). Contour plots of the numerical solutions obtained using the
SL schemes for the Kelvin–Helmholtz instability problem. These plots correspond to t = 40 and are based
on a 256 × 256 mesh with CFL = 10.2

In Fig. 21, we present the contour plots of the numerical solutions obtained using the SL
schemes at T = 40. Cross-sections of these numerical solutions at y = π are showcased
in Fig. 22. The numerical results align well with those previously reported in the literature
[3, 35]. Visually, it is evident that the numerical solution from the SL HWENO-1 scheme
captures the most intricate structures. The resolution offered by the SL HWENO-2 scheme
is marginally less detailed than that of the SL HWENO-1 scheme. On the other hand, the
SL HWENO-3 and SL WENO-ZQ schemes tend to blur some structures in comparison to
the first two SL schemes. However, the SL HWENO-1 scheme exhibits distinct upward and
downward overshooting compared to the other two schemes, as it overshoots the upper bound
of 1.015 and downward overshoots the lower bound of −1.015. This is notable considering
that the guiding centerVlasovmodel should be preserving itsmaximumandminimumvalues.

The Kelvin–Helmholtz instability problem is known to preserve mass, L p norm, energy,
and enstrophy, as described in [35, 36]. In Fig. 23, we illustrate the time evolution of the
mass deviation, as well as the relative deviations of the L1 norm, energy, and enstrophy, as
simulated by the SL schemes. We focus on the deviation (rather than the relative deviation)
for mass because the total mass of the Kelvin–Helmholtz instability problem is zero. In terms
of mass deviation, we observe a magnitude of O(10−11) up to t = 200 for the SL HWENO
schemes, with the SL WENO-ZQ scheme showing a significantly smaller magnitude. For
the L1 norm, energy, and enstrophy, the performance of the SL schemes is consistent and
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Fig. 22 (Kelvin–Helmholtz instability problem). Cross-sections of the numerical solutions in Fig.21 at y ≈
1.56

Fig. 23 (Kelvin–Helmholtz instability problem). Deviation of mass (top left), relative deviations of the L1

norm (top right), energy (bottom left), and enstrophy (bottom right) simulated by the SL schemes using a mesh
of 256 × 256 and a CFL of 10.2

comparable with existing results in the literature [3, 35]. However, it’s important to note
that the simulation settings in the literature vary significantly, and our proposed schemes
are not specifically designed to preserve these quantities. Therefore, we conclude that the
performance of the SL schemes is comparable to existing results achieved using schemes not
intended for conservation of these quantities.
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Fig. 24 (Shear flow problem). Contour plots of the numerical solutions obtained using the SL schemes for the
shear flow problem. These plots correspond to t = 8 and are based on a 256 × 256 mesh with CFL = 10.2

4.4 Incompressible Euler Equations in Vorticity-Stream Function Formulation

For the 2-D incompressible Euler equations in vorticity-stream function formulation, unless
specified, we set Nx = Ny = 256, CFL = 10.2, and

�t = CFL/ (max{u1}/�x + max{u2}/�y) .

Example 4.5 (Shear flow problem). Consider the incompressible Euler equations in vorticity-
stream function formulation in the domain [0, 2π ] × [0, 2π] with the following initial
condition

ω(x, y, 0) =
⎧
⎨
⎩

δcos(x) − 1
ρ
sech2

(
y−π/2

ρ

)
, if y ≤ π,

δcos(x) + 1
ρ
sech2

(
3π/2−y

ρ

)
, if y > π,

(4.6)

where δ = 0.05 and ρ = π/15, and the periodic boundary condition. In Fig. 24, we show
the contour plots of the numerical solutions of the SL schemes at T = 8. In Fig. 25, the
cross-sections of the numerical solutions in Fig. 24 are provided. From the cross-sections, it
is observed that the SL HWENO-3 and SL WENO-ZQ schemes exhibit greater dissipation
compared to the other two schemes.
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Fig. 25 (Shear flow problem). Cross-sections of the numerical solutions in Fig. 24 at y ≈ 1.56

5 Conclusion

This paper propose fourth-order SL HWENO schemes without operator splitting for two-
dimensional nonlinear Vlasov dynamics. Two new HWENO reconstruction methods are
introduced for capturing complicated solution structures without excessive dissipation. The
proposed schemes couple theweak formulation of the characteristicGalerkinmethodwith the
new HWENO reconstruction methods; the obtained SL HWENO schemes are fourth-order
accurate in both space and time,mass conservative, positivity-preserving, andunconditionally
stable under a linearized setting. A variety of tests are performed to verify these properties.

Appendix A. Coefficients of {qk(x, y)}4k=0

For q0(x, y),

aq01 = uni, j , aq02 = 12̃v
n
i, j , aq03 = 12w̃

n
i, j ,

aq04 = 1

2
uni−1, j − uni, j + 1

2
uni+1, j ,

aq05 = 1

4
uni−1, j−1 − 1

4
uni+1, j−1 − 1

4
uni−1, j+1 + 1

4
uni+1, j+1,

aq06 = 1

2
uni, j−1 − uni, j + 1

2
uni, j+1,

aq07 = − 5

11
uni−1, j + 5

11
uni+1, j − 120

11
ṽ
n
i, j ,

aq08 = −1

4
uni−1, j−1 + 1

2
uni, j−1 − 1

4
uni+1, j−1 + 1

4
uni−1, j+1 − 1

2
uni, j+1 + 1

4
uni+1, j+1,

aq09 = −1

4
uni−1, j−1 + 1

2
uni−1, j − 1

4
uni−1, j+1 + 1

4
uni+1, j−1 − 1

2
uni+1, j + 1

4
uni+1, j+1,

aq010 = − 5

11
uni, j−1 + 5

11
uni, j+1 − 120

11
w̃

n
i, j . (A.1)
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For q1(x, y),

aq11 = uni, j , aq12 = 12̃v
n
i, j , aq13 = 12w̃

n
i, j ,

aq14 = uni−1, j − uni, j + 12̃v
n
i, j ,

aq15 = uni−1, j−1 − uni, j−1 − uni−1, j + uni, j ,

aq16 = uni, j−1 − uni, j + 12w̃
n
i, j .

(A.2)

For q2(x, y),

aq21 = uni, j , aq22 = 12̃v
n
i, j , aq23 = 12w̃

n
i, j ,

aq24 = −uni, j + uni+1, j − 12̃v
n
i, j ,

aq25 = uni, j−1 − uni+1, j−1 − uni, j + uni+1, j ,

aq26 = uni, j−1 − uni, j + 12w̃
n
i, j .

(A.3)

For q3(x, y),

aq31 = uni, j , aq32 = 12̃v
n
i, j , aq33 = 12w̃

n
i, j ,

aq34 = uni−1, j − uni, j + 12̃v
n
i, j ,

aq35 = uni−1, j − uni, j − uni−1, j+1 + uni, j+1,

aq36 = −uni, j + uni, j+1 − 12w̃
n
i, j .

(A.4)

For q4(x, y),

aq41 = uni, j , aq42 = 12̃v
n
i, j , aq43 = 12w̃

n
i, j ,

aq44 = −uni, j + uni+1, j − 12̃v
n
i, j ,

aq45 = uni, j − uni+1, j − uni, j+1 + uni+1, j+1,

aq46 = −uni, j + uni, j+1 − 12w̃
n
i, j .

(A.5)

Appendix B. Numerical Proof of Remark 2.2

Consider the following linear transport equation,

ut + aux + buy = 0 (B.1)

with periodic boundary condition. Without loss of generality, we assume that a > 0 and
b > 0. We define θ1 = a�t

�x and θ2 = b�t
�y . Then (2.35) with Hn(x, y) reconstructed by the
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linear reconstruction is reorganized as follows:

un+1
i, j = 1

�x�y

[ ∫ x
i− 1

2
−�θ1��x

x
i− 1

2
−θ1�x

∫ y
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2
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(B.2)
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(B.3)

and

wn+1
i, j = 1

�x�y

[ ∫ x
i− 1

2
−�θ1��x

x
i− 1

2
−θ1�x

∫ y
j− 1

2
−�θ2��y

y
j− 1

2
−θ2�y

H (i−1−�θ1�, j−1−�θ2�)(x, y)
(
y + θ2�y − y j

�y

)
dxdy

+
∫ x

i− 1
2
+(1−θ1)�x

x
i− 1

2
−�θ1��x

∫ y
j− 1

2
−�θ2��y

y
j− 1

2
−θ2�y

H (i−�θ1�, j−1−�θ2�)(x, y)
(
y + θ2�y − y j

�y

)
dxdy

+
∫ x

i− 1
2
−�θ1��x

x
i− 1

2
−θ1�x

∫ y
j− 1

2
+(1−θ2)�y

y
j− 1

2
−�θ2��y

H (i−1−�θ1�, j−�θ2�)(x, y)
(
y + θ2�y − y j

�y

)
dxdy

+
∫ x

i− 1
2
+(1−θ1)�x

x
i− 1

2
−�θ1��x

∫ y
j− 1

2
+(1−θ2)�y

y
j− 1

2
−�θ2��y

H (i−�θ1�, j−�θ2�)(x, y)
(
y + θ2�y − y j

�y

)
dxdy,

(B.4)

where �·� represents the largest integer smaller than the input number. Now, we assume that

unp,q = uneI ξ1 p�x eI ξ2q�y, vnp,q = vneI ξ1 p�x eI ξ2q�y,

wn
p,q = wneI ξ1 p�x eI ξ2q�y ∀p, q, (B.5)

and

un+1
i, j = un+1eI ξ1i�x eI ξ2 j�y, vn+1

i, j = vn+1eI ξ1i�x eI ξ2 j�y,

wn+1
i, j = wn+1eI ξ1i�x eI ξ2 j�y, (B.6)

where I = √−1. Submitting (B.5) and (B.6) into (B.2)–(B.4), we find that
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⎡
⎣
un+1

vn+1

wn+1

⎤
⎦ = A(θ1, θ2, ξ1, ξ2)

⎡
⎣
un

vn

wn

⎤
⎦ , (B.7)

where A(θ1, θ2, ξ1, ξ2) is the 3 × 3 amplification matrix. We skip the explicit expression of
A(θ1, θ2, ξ1, ξ2) for conciseness since it is very complicated. We denote the spectral radius
of A(θ1, θ2, ξ1, ξ2) by ρ(A(θ1, θ2, ξ1, ξ2)). With basic algebraic manipulation, we have

A(θ1, θ2, ξ1, ξ2) = e−I ξ1�θ1��x e−I ξ2�θ2��y A(θ1 − �θ1�, θ2 − �θ2�, ξ1, ξ2). (B.8)

Hence, by vonNuemann analysis, it is sufficient to verify thatρ(A(θ1, θ2, ξ1, ξ2)) ≤ 1 for any
θ1, θ2 ∈ [0, 1] and ξ1�x, ξ2�y ∈ [0, 2π ]. We were not able to find a theoretical expression
of ρ(A(θ1, θ2, ξ1, ξ2)). We numerically verify this relation by sampling 1000 uniform points
over each θ1, θ2, ξ1�x , ξ2�y domain. We find that all the ρ(A(·, ·, ·, ·)) values computed by
the sampling points are not greater than 1, which validates Remark 2.2.
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